cognitive/docs/guides/implementation/temporal_models.md
Daniel Ari Friedman 7ca29024d8 Updates
2025-02-12 13:23:51 -08:00

347 строки
9.0 KiB
Markdown

---
title: Temporal Models Implementation
type: implementation_guide
status: stable
created: 2024-02-12
tags:
- implementation
- predictive-processing
- temporal-dynamics
semantic_relations:
- type: implements
links: [[../../learning_paths/predictive_processing]]
- type: relates
links:
- [[predictive_network]]
- [[error_propagation]]
- [[precision_mechanisms]]
---
# Temporal Models Implementation
## Overview
This guide details the implementation of temporal models in predictive processing networks, focusing on sequence prediction, temporal dependencies, and dynamic updating.
## Core Components
### Temporal Layer
```python
class TemporalLayer(nn.Module):
def __init__(self,
input_size: int,
hidden_size: int,
temporal_horizon: int = 10):
"""Initialize temporal layer.
Args:
input_size: Size of input features
hidden_size: Size of hidden state
temporal_horizon: Number of timesteps to consider
"""
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.temporal_horizon = temporal_horizon
# Temporal state
self.hidden_state = torch.zeros(hidden_size)
self.state_history = []
# Neural components
self.state_update = nn.GRUCell(input_size, hidden_size)
self.temporal_attention = TemporalAttention(hidden_size)
self.prediction_head = nn.Linear(hidden_size, input_size)
```
### Temporal Attention
```python
class TemporalAttention(nn.Module):
def __init__(self, hidden_size: int):
"""Initialize temporal attention mechanism.
Args:
hidden_size: Size of hidden state
"""
super().__init__()
# Attention components
self.query_proj = nn.Linear(hidden_size, hidden_size)
self.key_proj = nn.Linear(hidden_size, hidden_size)
self.value_proj = nn.Linear(hidden_size, hidden_size)
def forward(self,
query: torch.Tensor,
keys: List[torch.Tensor],
values: List[torch.Tensor]) -> torch.Tensor:
"""Compute temporal attention.
Args:
query: Current query state
keys: Historical key states
values: Historical value states
Returns:
context: Temporal context vector
"""
# Project query, keys, and values
q = self.query_proj(query)
k = torch.stack([self.key_proj(k) for k in keys])
v = torch.stack([self.value_proj(v) for v in values])
# Compute attention scores
scores = torch.matmul(q, k.transpose(-2, -1))
scores = scores / math.sqrt(self.hidden_size)
weights = F.softmax(scores, dim=-1)
# Compute weighted context
context = torch.matmul(weights, v)
return context
```
## Implementation
### Temporal Prediction
```python
def predict_next(self,
current_input: torch.Tensor) -> torch.Tensor:
"""Predict next timestep.
Args:
current_input: Current input tensor
Returns:
prediction: Prediction for next timestep
"""
# Update hidden state
self.hidden_state = self.state_update(
current_input,
self.hidden_state
)
# Update state history
self.state_history.append(self.hidden_state)
if len(self.state_history) > self.temporal_horizon:
self.state_history.pop(0)
# Compute temporal attention
if len(self.state_history) > 1:
context = self.temporal_attention(
query=self.hidden_state,
keys=self.state_history[:-1],
values=self.state_history[:-1]
)
# Combine with current state
combined = (self.hidden_state + context) / 2
else:
combined = self.hidden_state
# Generate prediction
prediction = self.prediction_head(combined)
return prediction
```
### Sequence Processing
```python
def process_sequence(self,
sequence: torch.Tensor,
teacher_forcing_ratio: float = 0.5) -> List[torch.Tensor]:
"""Process temporal sequence.
Args:
sequence: Input sequence [T, input_size]
teacher_forcing_ratio: Ratio of teacher forcing
Returns:
predictions: List of predictions
"""
predictions = []
current_input = sequence[0]
for t in range(1, len(sequence)):
# Generate prediction
prediction = self.predict_next(current_input)
predictions.append(prediction)
# Teacher forcing
if random.random() < teacher_forcing_ratio:
current_input = sequence[t]
else:
current_input = prediction
return predictions
```
## Advanced Features
### Multi-scale Temporal Processing
```python
class MultiScaleTemporalModel(nn.Module):
def __init__(self,
input_size: int,
num_scales: int = 3):
"""Initialize multi-scale temporal model.
Args:
input_size: Size of input features
num_scales: Number of temporal scales
"""
super().__init__()
# Create temporal layers at different scales
self.temporal_scales = nn.ModuleList([
TemporalLayer(
input_size=input_size,
hidden_size=input_size * 2,
temporal_horizon=2 ** i
)
for i in range(num_scales)
])
# Scale integration
self.scale_attention = nn.Linear(
num_scales * input_size,
input_size
)
def forward(self,
sequence: torch.Tensor) -> torch.Tensor:
"""Process sequence at multiple scales.
Args:
sequence: Input sequence
Returns:
prediction: Integrated prediction
"""
# Process at each scale
scale_predictions = []
for scale in self.temporal_scales:
pred = scale.process_sequence(sequence)
scale_predictions.append(pred[-1])
# Integrate predictions
combined = torch.cat(scale_predictions, dim=-1)
prediction = self.scale_attention(combined)
return prediction
```
### Temporal Error Integration
```python
class TemporalErrorIntegration:
def __init__(self,
decay_factor: float = 0.9,
max_history: int = 100):
"""Initialize temporal error integration.
Args:
decay_factor: Error decay rate
max_history: Maximum history length
"""
self.decay_factor = decay_factor
self.max_history = max_history
self.error_history = []
def integrate_error(self,
current_error: torch.Tensor) -> torch.Tensor:
"""Integrate error over time.
Args:
current_error: Current prediction error
Returns:
integrated: Temporally integrated error
"""
# Update history
self.error_history.append(current_error)
if len(self.error_history) > self.max_history:
self.error_history.pop(0)
# Compute temporal weights
weights = torch.tensor([
self.decay_factor ** i
for i in range(len(self.error_history))
])
weights = weights / weights.sum()
# Compute weighted sum
integrated = sum(
e * w for e, w in zip(self.error_history, weights)
)
return integrated
```
## Usage Examples
### Basic Usage
```python
# Initialize temporal layer
temporal_layer = TemporalLayer(
input_size=64,
hidden_size=128,
temporal_horizon=10
)
# Process sequence
sequence = torch.randn(20, 64) # [T, input_size]
predictions = temporal_layer.process_sequence(sequence)
# Get next prediction
next_pred = temporal_layer.predict_next(sequence[-1])
```
### Multi-scale Processing
```python
# Initialize multi-scale model
multi_scale = MultiScaleTemporalModel(
input_size=64,
num_scales=3
)
# Process sequence
sequence = torch.randn(20, 64)
prediction = multi_scale(sequence)
```
## Best Practices
### Temporal Processing
1. Handle variable sequences
2. Implement teacher forcing
3. Use appropriate horizons
4. Consider multiple scales
### Memory Management
1. Limit history size
2. Clear unused states
3. Batch sequences
4. Optimize storage
### Training
1. Curriculum learning
2. Scheduled sampling
3. Gradient clipping
4. Validation splits
## Common Issues
### Stability
1. Vanishing gradients
2. Exploding predictions
3. Memory overflow
4. Error accumulation
### Solutions
1. Residual connections
2. Gradient normalization
3. Memory optimization
4. Error gating
## Related Documentation
- [[predictive_network]]
- [[error_propagation]]
- [[precision_mechanisms]]