зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 13:16:05 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			347 строки
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			347 строки
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Temporal Models Implementation
 | |
| type: implementation_guide
 | |
| status: stable
 | |
| created: 2024-02-12
 | |
| tags:
 | |
|   - implementation
 | |
|   - predictive-processing
 | |
|   - temporal-dynamics
 | |
| semantic_relations:
 | |
|   - type: implements
 | |
|     links: [[../../learning_paths/predictive_processing]]
 | |
|   - type: relates
 | |
|     links:
 | |
|       - [[predictive_network]]
 | |
|       - [[error_propagation]]
 | |
|       - [[precision_mechanisms]]
 | |
| ---
 | |
| 
 | |
| # Temporal Models Implementation
 | |
| 
 | |
| ## Overview
 | |
| 
 | |
| This guide details the implementation of temporal models in predictive processing networks, focusing on sequence prediction, temporal dependencies, and dynamic updating.
 | |
| 
 | |
| ## Core Components
 | |
| 
 | |
| ### Temporal Layer
 | |
| ```python
 | |
| class TemporalLayer(nn.Module):
 | |
|     def __init__(self,
 | |
|                  input_size: int,
 | |
|                  hidden_size: int,
 | |
|                  temporal_horizon: int = 10):
 | |
|         """Initialize temporal layer.
 | |
|         
 | |
|         Args:
 | |
|             input_size: Size of input features
 | |
|             hidden_size: Size of hidden state
 | |
|             temporal_horizon: Number of timesteps to consider
 | |
|         """
 | |
|         super().__init__()
 | |
|         
 | |
|         self.input_size = input_size
 | |
|         self.hidden_size = hidden_size
 | |
|         self.temporal_horizon = temporal_horizon
 | |
|         
 | |
|         # Temporal state
 | |
|         self.hidden_state = torch.zeros(hidden_size)
 | |
|         self.state_history = []
 | |
|         
 | |
|         # Neural components
 | |
|         self.state_update = nn.GRUCell(input_size, hidden_size)
 | |
|         self.temporal_attention = TemporalAttention(hidden_size)
 | |
|         self.prediction_head = nn.Linear(hidden_size, input_size)
 | |
| ```
 | |
| 
 | |
| ### Temporal Attention
 | |
| ```python
 | |
| class TemporalAttention(nn.Module):
 | |
|     def __init__(self, hidden_size: int):
 | |
|         """Initialize temporal attention mechanism.
 | |
|         
 | |
|         Args:
 | |
|             hidden_size: Size of hidden state
 | |
|         """
 | |
|         super().__init__()
 | |
|         
 | |
|         # Attention components
 | |
|         self.query_proj = nn.Linear(hidden_size, hidden_size)
 | |
|         self.key_proj = nn.Linear(hidden_size, hidden_size)
 | |
|         self.value_proj = nn.Linear(hidden_size, hidden_size)
 | |
|         
 | |
|     def forward(self,
 | |
|                 query: torch.Tensor,
 | |
|                 keys: List[torch.Tensor],
 | |
|                 values: List[torch.Tensor]) -> torch.Tensor:
 | |
|         """Compute temporal attention.
 | |
|         
 | |
|         Args:
 | |
|             query: Current query state
 | |
|             keys: Historical key states
 | |
|             values: Historical value states
 | |
|             
 | |
|         Returns:
 | |
|             context: Temporal context vector
 | |
|         """
 | |
|         # Project query, keys, and values
 | |
|         q = self.query_proj(query)
 | |
|         k = torch.stack([self.key_proj(k) for k in keys])
 | |
|         v = torch.stack([self.value_proj(v) for v in values])
 | |
|         
 | |
|         # Compute attention scores
 | |
|         scores = torch.matmul(q, k.transpose(-2, -1))
 | |
|         scores = scores / math.sqrt(self.hidden_size)
 | |
|         weights = F.softmax(scores, dim=-1)
 | |
|         
 | |
|         # Compute weighted context
 | |
|         context = torch.matmul(weights, v)
 | |
|         return context
 | |
| ```
 | |
| 
 | |
| ## Implementation
 | |
| 
 | |
| ### Temporal Prediction
 | |
| ```python
 | |
| def predict_next(self,
 | |
|                 current_input: torch.Tensor) -> torch.Tensor:
 | |
|     """Predict next timestep.
 | |
|     
 | |
|     Args:
 | |
|         current_input: Current input tensor
 | |
|         
 | |
|     Returns:
 | |
|         prediction: Prediction for next timestep
 | |
|     """
 | |
|     # Update hidden state
 | |
|     self.hidden_state = self.state_update(
 | |
|         current_input,
 | |
|         self.hidden_state
 | |
|     )
 | |
|     
 | |
|     # Update state history
 | |
|     self.state_history.append(self.hidden_state)
 | |
|     if len(self.state_history) > self.temporal_horizon:
 | |
|         self.state_history.pop(0)
 | |
|     
 | |
|     # Compute temporal attention
 | |
|     if len(self.state_history) > 1:
 | |
|         context = self.temporal_attention(
 | |
|             query=self.hidden_state,
 | |
|             keys=self.state_history[:-1],
 | |
|             values=self.state_history[:-1]
 | |
|         )
 | |
|         
 | |
|         # Combine with current state
 | |
|         combined = (self.hidden_state + context) / 2
 | |
|     else:
 | |
|         combined = self.hidden_state
 | |
|     
 | |
|     # Generate prediction
 | |
|     prediction = self.prediction_head(combined)
 | |
|     return prediction
 | |
| ```
 | |
| 
 | |
| ### Sequence Processing
 | |
| ```python
 | |
| def process_sequence(self,
 | |
|                     sequence: torch.Tensor,
 | |
|                     teacher_forcing_ratio: float = 0.5) -> List[torch.Tensor]:
 | |
|     """Process temporal sequence.
 | |
|     
 | |
|     Args:
 | |
|         sequence: Input sequence [T, input_size]
 | |
|         teacher_forcing_ratio: Ratio of teacher forcing
 | |
|         
 | |
|     Returns:
 | |
|         predictions: List of predictions
 | |
|     """
 | |
|     predictions = []
 | |
|     current_input = sequence[0]
 | |
|     
 | |
|     for t in range(1, len(sequence)):
 | |
|         # Generate prediction
 | |
|         prediction = self.predict_next(current_input)
 | |
|         predictions.append(prediction)
 | |
|         
 | |
|         # Teacher forcing
 | |
|         if random.random() < teacher_forcing_ratio:
 | |
|             current_input = sequence[t]
 | |
|         else:
 | |
|             current_input = prediction
 | |
|     
 | |
|     return predictions
 | |
| ```
 | |
| 
 | |
| ## Advanced Features
 | |
| 
 | |
| ### Multi-scale Temporal Processing
 | |
| ```python
 | |
| class MultiScaleTemporalModel(nn.Module):
 | |
|     def __init__(self,
 | |
|                  input_size: int,
 | |
|                  num_scales: int = 3):
 | |
|         """Initialize multi-scale temporal model.
 | |
|         
 | |
|         Args:
 | |
|             input_size: Size of input features
 | |
|             num_scales: Number of temporal scales
 | |
|         """
 | |
|         super().__init__()
 | |
|         
 | |
|         # Create temporal layers at different scales
 | |
|         self.temporal_scales = nn.ModuleList([
 | |
|             TemporalLayer(
 | |
|                 input_size=input_size,
 | |
|                 hidden_size=input_size * 2,
 | |
|                 temporal_horizon=2 ** i
 | |
|             )
 | |
|             for i in range(num_scales)
 | |
|         ])
 | |
|         
 | |
|         # Scale integration
 | |
|         self.scale_attention = nn.Linear(
 | |
|             num_scales * input_size,
 | |
|             input_size
 | |
|         )
 | |
|     
 | |
|     def forward(self,
 | |
|                 sequence: torch.Tensor) -> torch.Tensor:
 | |
|         """Process sequence at multiple scales.
 | |
|         
 | |
|         Args:
 | |
|             sequence: Input sequence
 | |
|             
 | |
|         Returns:
 | |
|             prediction: Integrated prediction
 | |
|         """
 | |
|         # Process at each scale
 | |
|         scale_predictions = []
 | |
|         for scale in self.temporal_scales:
 | |
|             pred = scale.process_sequence(sequence)
 | |
|             scale_predictions.append(pred[-1])
 | |
|         
 | |
|         # Integrate predictions
 | |
|         combined = torch.cat(scale_predictions, dim=-1)
 | |
|         prediction = self.scale_attention(combined)
 | |
|         
 | |
|         return prediction
 | |
| ```
 | |
| 
 | |
| ### Temporal Error Integration
 | |
| ```python
 | |
| class TemporalErrorIntegration:
 | |
|     def __init__(self,
 | |
|                  decay_factor: float = 0.9,
 | |
|                  max_history: int = 100):
 | |
|         """Initialize temporal error integration.
 | |
|         
 | |
|         Args:
 | |
|             decay_factor: Error decay rate
 | |
|             max_history: Maximum history length
 | |
|         """
 | |
|         self.decay_factor = decay_factor
 | |
|         self.max_history = max_history
 | |
|         self.error_history = []
 | |
|         
 | |
|     def integrate_error(self,
 | |
|                        current_error: torch.Tensor) -> torch.Tensor:
 | |
|         """Integrate error over time.
 | |
|         
 | |
|         Args:
 | |
|             current_error: Current prediction error
 | |
|             
 | |
|         Returns:
 | |
|             integrated: Temporally integrated error
 | |
|         """
 | |
|         # Update history
 | |
|         self.error_history.append(current_error)
 | |
|         if len(self.error_history) > self.max_history:
 | |
|             self.error_history.pop(0)
 | |
|         
 | |
|         # Compute temporal weights
 | |
|         weights = torch.tensor([
 | |
|             self.decay_factor ** i
 | |
|             for i in range(len(self.error_history))
 | |
|         ])
 | |
|         weights = weights / weights.sum()
 | |
|         
 | |
|         # Compute weighted sum
 | |
|         integrated = sum(
 | |
|             e * w for e, w in zip(self.error_history, weights)
 | |
|         )
 | |
|         
 | |
|         return integrated
 | |
| ```
 | |
| 
 | |
| ## Usage Examples
 | |
| 
 | |
| ### Basic Usage
 | |
| ```python
 | |
| # Initialize temporal layer
 | |
| temporal_layer = TemporalLayer(
 | |
|     input_size=64,
 | |
|     hidden_size=128,
 | |
|     temporal_horizon=10
 | |
| )
 | |
| 
 | |
| # Process sequence
 | |
| sequence = torch.randn(20, 64)  # [T, input_size]
 | |
| predictions = temporal_layer.process_sequence(sequence)
 | |
| 
 | |
| # Get next prediction
 | |
| next_pred = temporal_layer.predict_next(sequence[-1])
 | |
| ```
 | |
| 
 | |
| ### Multi-scale Processing
 | |
| ```python
 | |
| # Initialize multi-scale model
 | |
| multi_scale = MultiScaleTemporalModel(
 | |
|     input_size=64,
 | |
|     num_scales=3
 | |
| )
 | |
| 
 | |
| # Process sequence
 | |
| sequence = torch.randn(20, 64)
 | |
| prediction = multi_scale(sequence)
 | |
| ```
 | |
| 
 | |
| ## Best Practices
 | |
| 
 | |
| ### Temporal Processing
 | |
| 1. Handle variable sequences
 | |
| 2. Implement teacher forcing
 | |
| 3. Use appropriate horizons
 | |
| 4. Consider multiple scales
 | |
| 
 | |
| ### Memory Management
 | |
| 1. Limit history size
 | |
| 2. Clear unused states
 | |
| 3. Batch sequences
 | |
| 4. Optimize storage
 | |
| 
 | |
| ### Training
 | |
| 1. Curriculum learning
 | |
| 2. Scheduled sampling
 | |
| 3. Gradient clipping
 | |
| 4. Validation splits
 | |
| 
 | |
| ## Common Issues
 | |
| 
 | |
| ### Stability
 | |
| 1. Vanishing gradients
 | |
| 2. Exploding predictions
 | |
| 3. Memory overflow
 | |
| 4. Error accumulation
 | |
| 
 | |
| ### Solutions
 | |
| 1. Residual connections
 | |
| 2. Gradient normalization
 | |
| 3. Memory optimization
 | |
| 4. Error gating
 | |
| 
 | |
| ## Related Documentation
 | |
| - [[predictive_network]]
 | |
| - [[error_propagation]]
 | |
| - [[precision_mechanisms]]  | 
