зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 05:06:04 +02:00 
			
		
		
		
	
		
			
				
	
	
	
		
			8.6 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			8.6 KiB
		
	
	
	
	
	
	
	
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | |||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Active Inference in Ecological Systems Learning Path | learning_path | stable | 2024-03-15 | advanced | 1 | 
 | 
 | 
Active Inference in Ecological Systems Learning Path
Overview
This specialized path focuses on applying Active Inference to understand ecological systems, environmental dynamics, and ecosystem management. It integrates ecological theory with complex systems modeling.
Prerequisites
1. Ecological Foundations (4 weeks)
- 
Ecosystem Dynamics - Population dynamics
- Species interactions
- Energy flow
- Nutrient cycling
 
- 
Environmental Science - Climate systems
- Biogeochemical cycles
- Landscape ecology
- Ecosystem services
 
- 
Ecological Methods - Field methods
- Data collection
- Statistical analysis
- Monitoring systems
 
- 
Systems Theory - Complex systems
- Network analysis
- Dynamical systems
- Information theory
 
2. Technical Skills (2 weeks)
- Computational Tools
- Python/R
- GIS software
- Statistical packages
- Visualization tools
 
Core Learning Path
1. Ecological Modeling (4 weeks)
Week 1-2: System State Estimation
class EcosystemStateEstimator:
    def __init__(self,
                 n_species: int,
                 n_resources: int):
        """Initialize ecosystem state estimator."""
        self.species_model = SpeciesDynamics(n_species)
        self.resource_model = ResourceDynamics(n_resources)
        self.interaction_matrix = self._initialize_interactions()
        
    def estimate_state(self,
                      observations: torch.Tensor,
                      time_scale: float) -> Dict[str, torch.Tensor]:
        """Estimate ecosystem state."""
        # Update species dynamics
        species_state = self.species_model.update(
            observations['species'],
            self.interaction_matrix,
            time_scale
        )
        
        # Update resource dynamics
        resource_state = self.resource_model.update(
            observations['resources'],
            species_state,
            time_scale
        )
        
        return {
            'species': species_state,
            'resources': resource_state
        }
Week 3-4: Intervention Planning
class EcologicalController:
    def __init__(self,
                 n_interventions: int,
                 system_model: EcosystemModel):
        """Initialize ecological controller."""
        self.interventions = InterventionSet(n_interventions)
        self.model = system_model
        self.objectives = MultiObjectiveFunction()
        
    def plan_intervention(self,
                        current_state: torch.Tensor,
                        target_state: torch.Tensor) -> Dict[str, Any]:
        """Plan ecological intervention."""
        # Generate intervention policies
        policies = self.interventions.generate_policies(current_state)
        
        # Evaluate expected free energy
        G = torch.zeros(len(policies))
        for i, policy in enumerate(policies):
            # Simulate intervention effects
            future_states = self.model.simulate_policy(
                current_state, policy
            )
            
            # Compute expected free energy
            G[i] = self.compute_expected_free_energy(
                future_states, target_state
            )
        
        # Select optimal intervention
        best_policy = policies[torch.argmin(G)]
        return self.create_intervention_plan(best_policy)
2. Ecological Applications (6 weeks)
Week 1-2: Population Dynamics
- Species Interactions
- Competition Models
- Predator-Prey Systems
- Community Structure
Week 3-4: Resource Management
- Sustainable Harvesting
- Conservation Planning
- Habitat Management
- Invasive Species Control
Week 5-6: Ecosystem Services
- Biodiversity Maintenance
- Carbon Sequestration
- Water Management
- Pollination Services
3. Environmental Applications (4 weeks)
Week 1-2: Climate Response
class ClimateResponseModel:
    def __init__(self,
                 climate_vars: List[str],
                 ecosystem_vars: List[str]):
        """Initialize climate response model."""
        self.climate = ClimateModel(climate_vars)
        self.ecosystem = EcosystemModel(ecosystem_vars)
        self.coupling = self._initialize_coupling()
        
    def predict_response(self,
                        climate_scenario: torch.Tensor,
                        time_horizon: int) -> Dict[str, torch.Tensor]:
        """Predict ecosystem response to climate scenario."""
        responses = []
        state = self.ecosystem.get_state()
        
        for t in range(time_horizon):
            # Update climate
            climate_state = self.climate.step(climate_scenario[t])
            
            # Update ecosystem
            ecosystem_response = self.ecosystem.respond_to_climate(
                state, climate_state
            )
            
            responses.append(ecosystem_response)
            state = ecosystem_response
        
        return self.analyze_responses(responses)
Week 3-4: Adaptation Planning
- Vulnerability Assessment
- Resilience Building
- Adaptation Strategies
- Risk Management
4. Advanced Topics (4 weeks)
Week 1-2: Complex Systems Analysis
class EcologicalNetworkAnalysis:
    def __init__(self,
                 network: nx.Graph,
                 dynamics: Dict[str, Callable]):
        """Initialize ecological network analysis."""
        self.network = network
        self.dynamics = dynamics
        self.metrics = NetworkMetrics()
        
    def analyze_stability(self,
                         perturbation: torch.Tensor) -> Dict[str, float]:
        """Analyze network stability under perturbation."""
        # Compute network properties
        properties = self.metrics.compute_properties(self.network)
        
        # Simulate perturbation
        response = self.simulate_perturbation(perturbation)
        
        # Analyze stability
        stability = self.metrics.analyze_stability(
            properties, response
        )
        
        return stability
Week 3-4: Socio-Ecological Systems
- Human-Environment Interactions
- Social-Ecological Coupling
- Adaptive Management
- Governance Systems
Projects
Ecosystem Projects
- 
Population Management - Species Conservation
- Harvest Planning
- Pest Control
- Habitat Restoration
 
- 
Resource Management - Sustainable Yield
- Ecosystem Services
- Land Use Planning
- Water Management
 
Environmental Projects
- 
Climate Adaptation - Vulnerability Analysis
- Adaptation Planning
- Resilience Assessment
- Risk Management
 
- 
Conservation Planning - Protected Areas
- Corridor Design
- Species Recovery
- Habitat Management
 
Assessment
Knowledge Assessment
- 
Theoretical Understanding - Ecological Processes
- System Dynamics
- Management Principles
- Environmental Change
 
- 
Practical Skills - Data Analysis
- Modeling
- Intervention Design
- Impact Assessment
 
Final Projects
- 
Research Project - System Analysis
- Model Development
- Data Collection
- Results Synthesis
 
- 
Management Project - Problem Assessment
- Strategy Development
- Implementation Plan
- Monitoring Design
 
Resources
Scientific Resources
- 
Research Papers - Ecological Theory
- System Modeling
- Management Studies
- Case Studies
 
- 
Books - Ecosystem Science
- Complex Systems
- Environmental Management
- Conservation Biology
 
Technical Resources
- 
Software Tools - Modeling Packages
- GIS Software
- Statistical Tools
- Visualization Libraries
 
- 
Data Resources - Ecological Databases
- Climate Data
- Species Records
- Environmental Monitoring
 
Next Steps
Advanced Topics
- ecosystem_modeling_learning_path
- conservation_biology_learning_path
- environmental_management_learning_path
