зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 21:26:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			267 строки
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			267 строки
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Swarm Intelligence Learning Path
 | |
| type: learning_path
 | |
| status: stable
 | |
| created: 2024-02-07
 | |
| tags:
 | |
|   - swarm_intelligence
 | |
|   - collective_behavior
 | |
|   - learning
 | |
| semantic_relations:
 | |
|   - type: implements
 | |
|     links: [[learning_path_template]]
 | |
|   - type: relates
 | |
|     links:
 | |
|       - [[knowledge_base/cognitive/swarm_intelligence]]
 | |
|       - [[knowledge_base/cognitive/collective_behavior]]
 | |
| ---
 | |
| 
 | |
| # Swarm Intelligence Learning Path
 | |
| 
 | |
| ## Overview
 | |
| 
 | |
| This learning path guides you through understanding and implementing swarm intelligence systems, with special focus on biologically-inspired collective behavior. You'll learn theoretical principles, mathematical models, and practical implementations using the ant colony example.
 | |
| 
 | |
| ## Prerequisites
 | |
| 
 | |
| ### Required Knowledge
 | |
| - [[knowledge_base/mathematics/probability_theory|Probability Theory]]
 | |
| - [[knowledge_base/cognitive/emergence_self_organization|Emergence and Self-Organization]]
 | |
| - [[knowledge_base/systems/systems_theory|Systems Theory]]
 | |
| 
 | |
| ### Recommended Background
 | |
| - Python programming
 | |
| - Basic agent-based modeling
 | |
| - Complex systems concepts
 | |
| 
 | |
| ## Learning Progression
 | |
| 
 | |
| ### 1. Foundations (Week 1-2)
 | |
| #### Core Concepts
 | |
| - [[knowledge_base/cognitive/collective_behavior|Collective Behavior]]
 | |
| - [[knowledge_base/cognitive/emergence_self_organization|Emergence]]
 | |
| - [[knowledge_base/cognitive/stigmergic_coordination|Stigmergic Coordination]]
 | |
| 
 | |
| #### Practical Exercises
 | |
| - [[examples/basic_swarm|Basic Swarm Simulation]]
 | |
| - [[examples/emergence_patterns|Emergence Patterns]]
 | |
| 
 | |
| #### Learning Objectives
 | |
| - Understand swarm principles
 | |
| - Implement basic swarm behaviors
 | |
| - Analyze emergent patterns
 | |
| 
 | |
| ### 2. Ant Colony Systems (Week 3-4)
 | |
| #### Advanced Concepts
 | |
| - [[knowledge_base/cognitive/social_insect_cognition|Social Insect Cognition]]
 | |
| - [[knowledge_base/cognitive/collective_behavior_ants|Ant Colony Behavior]]
 | |
| - [[knowledge_base/cognitive/pheromone_communication|Pheromone Communication]]
 | |
| 
 | |
| #### Implementation Practice
 | |
| - [[examples/pheromone_system|Pheromone System]]
 | |
| - [[examples/foraging_behavior|Foraging Behavior]]
 | |
| 
 | |
| #### Learning Objectives
 | |
| - Implement pheromone systems
 | |
| - Model foraging behavior
 | |
| - Develop path optimization
 | |
| 
 | |
| ### 3. Advanced Implementation (Week 5-6)
 | |
| #### Core Components
 | |
| - [[knowledge_base/cognitive/active_inference|Active Inference]]
 | |
| - [[knowledge_base/mathematics/path_integral_theory|Path Integral Methods]]
 | |
| - [[knowledge_base/cognitive/hierarchical_processing|Hierarchical Models]]
 | |
| 
 | |
| #### Projects
 | |
| - [[examples/ant_colony|Ant Colony Simulation]]
 | |
| - [[examples/multi_colony|Multi-Colony System]]
 | |
| 
 | |
| #### Learning Objectives
 | |
| - Implement complete colony system
 | |
| - Integrate active inference
 | |
| - Develop advanced features
 | |
| 
 | |
| ## Implementation Examples
 | |
| 
 | |
| ### Basic Swarm Agent
 | |
| ```python
 | |
| class SwarmAgent:
 | |
|     def __init__(self, config):
 | |
|         self.position = initialize_position()
 | |
|         self.velocity = initialize_velocity()
 | |
|         self.sensors = create_sensors()
 | |
|         
 | |
|     def update(self, neighbors, environment):
 | |
|         """Update agent state based on local information."""
 | |
|         # Process sensor information
 | |
|         local_info = self.sensors.process(neighbors, environment)
 | |
|         
 | |
|         # Update movement
 | |
|         self.velocity = compute_velocity(local_info)
 | |
|         self.position += self.velocity
 | |
|         
 | |
|     def interact(self, environment):
 | |
|         """Interact with environment (e.g., deposit pheromones)."""
 | |
|         pass
 | |
| ```
 | |
| 
 | |
| ### Ant Colony Implementation
 | |
| ```python
 | |
| class AntColony:
 | |
|     def __init__(self, config):
 | |
|         self.agents = create_agents(config)
 | |
|         self.environment = create_environment(config)
 | |
|         self.pheromone_grid = initialize_pheromones()
 | |
|         
 | |
|     def update(self, dt):
 | |
|         """Update colony state."""
 | |
|         # Update agents
 | |
|         for agent in self.agents:
 | |
|             observation = self.environment.get_local_state(agent.position)
 | |
|             agent.update(dt, observation)
 | |
|             
 | |
|         # Update environment
 | |
|         self.environment.update(dt)
 | |
|         self.pheromone_grid *= self.config.pheromone_decay
 | |
|         
 | |
|     def run_simulation(self, steps):
 | |
|         """Run simulation for specified steps."""
 | |
|         for step in range(steps):
 | |
|             self.update(self.config.timestep)
 | |
|             self.collect_data(step)
 | |
| ```
 | |
| 
 | |
| ## Study Resources
 | |
| 
 | |
| ### Core Reading
 | |
| - [[knowledge_base/cognitive/swarm_intelligence|Swarm Intelligence]]
 | |
| - [[knowledge_base/cognitive/collective_behavior|Collective Behavior]]
 | |
| - [[knowledge_base/cognitive/social_insect_cognition|Social Insect Cognition]]
 | |
| 
 | |
| ### Code Examples
 | |
| - [[examples/basic_swarm|Basic Swarm]]
 | |
| - [[examples/ant_colony|Ant Colony]]
 | |
| - [[examples/multi_colony|Multi-Colony]]
 | |
| 
 | |
| ### Additional Resources
 | |
| - Research papers
 | |
| - Video tutorials
 | |
| - Interactive simulations
 | |
| 
 | |
| ## Assessment
 | |
| 
 | |
| ### Knowledge Checkpoints
 | |
| 1. Swarm fundamentals
 | |
| 2. Ant colony systems
 | |
| 3. Advanced implementations
 | |
| 4. Real-world applications
 | |
| 
 | |
| ### Projects
 | |
| 1. Mini-project: Basic swarm simulation
 | |
| 2. Implementation: Ant colony system
 | |
| 3. Final project: Advanced application
 | |
| 
 | |
| ### Success Criteria
 | |
| - Working swarm implementation
 | |
| - Ant colony simulation
 | |
| - Advanced features
 | |
| - Performance optimization
 | |
| 
 | |
| ## Next Steps
 | |
| 
 | |
| ### Advanced Paths
 | |
| - [[learning_paths/advanced_swarm|Advanced Swarm Systems]]
 | |
| - [[learning_paths/multi_agent_systems|Multi-Agent Systems]]
 | |
| - [[learning_paths/robotics_swarms|Robotic Swarms]]
 | |
| 
 | |
| ### Specializations
 | |
| - [[specializations/swarm_robotics|Swarm Robotics]]
 | |
| - [[specializations/collective_intelligence|Collective Intelligence]]
 | |
| - [[specializations/bio_inspired_computing|Bio-inspired Computing]]
 | |
| 
 | |
| ## Related Paths
 | |
| 
 | |
| ### Prerequisites
 | |
| - [[learning_paths/complex_systems|Complex Systems]]
 | |
| - [[learning_paths/agent_based_modeling|Agent-based Modeling]]
 | |
| 
 | |
| ### Follow-up Paths
 | |
| - [[learning_paths/advanced_robotics|Advanced Robotics]]
 | |
| - [[learning_paths/distributed_systems|Distributed Systems]]
 | |
| 
 | |
| ## Common Challenges
 | |
| 
 | |
| ### Theoretical Challenges
 | |
| - Understanding emergence
 | |
| - Modeling collective behavior
 | |
| - Analyzing system dynamics
 | |
| 
 | |
| ### Implementation Challenges
 | |
| - Efficient simulation
 | |
| - Scalability issues
 | |
| - Visualization complexity
 | |
| 
 | |
| ### Solutions
 | |
| - Start with simple models
 | |
| - Incremental complexity
 | |
| - Regular validation
 | |
| - Performance profiling
 | |
| 
 | |
| ## Example Configurations
 | |
| 
 | |
| ### Basic Swarm Config
 | |
| ```yaml
 | |
| swarm:
 | |
|   population_size: 100
 | |
|   sensor_range: 5.0
 | |
|   max_speed: 2.0
 | |
|   interaction_radius: 3.0
 | |
| 
 | |
| environment:
 | |
|   size: [100, 100]
 | |
|   obstacles: 10
 | |
|   boundary_conditions: "periodic"
 | |
| ```
 | |
| 
 | |
| ### Ant Colony Config
 | |
| ```yaml
 | |
| colony:
 | |
|   ants: 50
 | |
|   nest_location: [50, 50]
 | |
|   pheromone_decay: 0.99
 | |
|   
 | |
| foraging:
 | |
|   food_sources: 5
 | |
|   food_value: 1.0
 | |
|   max_steps: 10000
 | |
| ```
 | |
| 
 | |
| ## Visualization Tools
 | |
| 
 | |
| ### Basic Visualization
 | |
| ```python
 | |
| def visualize_swarm(agents, environment):
 | |
|     """Visualize swarm behavior."""
 | |
|     plt.figure(figsize=(10, 10))
 | |
|     
 | |
|     # Plot agents
 | |
|     positions = [agent.position for agent in agents]
 | |
|     plt.scatter([p.x for p in positions], 
 | |
|                 [p.y for p in positions])
 | |
|     
 | |
|     # Plot environment
 | |
|     environment.plot()
 | |
|     plt.show()
 | |
| ```
 | |
| 
 | |
| ### Advanced Analysis
 | |
| ```python
 | |
| def analyze_behavior(simulation_data):
 | |
|     """Analyze collective behavior patterns."""
 | |
|     # Compute metrics
 | |
|     coherence = compute_coherence(simulation_data)
 | |
|     efficiency = compute_efficiency(simulation_data)
 | |
|     
 | |
|     # Visualize results
 | |
|     plot_metrics(coherence, efficiency)
 | |
| ```  | 
