зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 20:56:04 +02:00
232 строки
5.4 KiB
Markdown
232 строки
5.4 KiB
Markdown
# Documentation Linking Analysis
|
|
|
|
---
|
|
title: Documentation Linking Analysis
|
|
type: guide
|
|
status: stable
|
|
created: 2024-02-06
|
|
tags:
|
|
- linking
|
|
- validation
|
|
- analysis
|
|
- documentation
|
|
semantic_relations:
|
|
- type: implements
|
|
links: [[obsidian_linking]]
|
|
- type: extends
|
|
links: [[ai_validation_framework]]
|
|
---
|
|
|
|
## Overview
|
|
This guide analyzes the current linking patterns and provides validation frameworks for maintaining high-quality documentation relationships.
|
|
|
|
## Link Pattern Analysis
|
|
|
|
### Core Link Types
|
|
```yaml
|
|
link_types:
|
|
hierarchical:
|
|
- parent_child: # Concept hierarchies
|
|
pattern: "[[parent]] -> [[child]]"
|
|
validation: "bidirectional"
|
|
- implementation: # Concept to implementation
|
|
pattern: "[[concept]] -> [[implementation]]"
|
|
validation: "traceable"
|
|
- documentation: # Documentation relationships
|
|
pattern: "[[guide]] -> [[reference]]"
|
|
validation: "consistent"
|
|
|
|
semantic:
|
|
- prerequisite: # Required knowledge
|
|
pattern: "[[prereq]] -> [[concept]]"
|
|
confidence: 0.8
|
|
- related: # Related concepts
|
|
pattern: "[[concept_a]] <-> [[concept_b]]"
|
|
similarity: 0.7
|
|
- extends: # Extension relationships
|
|
pattern: "[[base]] -> [[extension]]"
|
|
validation: "complete"
|
|
```
|
|
|
|
### Link Categories
|
|
|
|
#### Knowledge Organization
|
|
```python
|
|
# @knowledge_links
|
|
knowledge_structure = {
|
|
"concepts": {
|
|
"required": ["parent", "children", "implementations"],
|
|
"optional": ["related", "examples", "references"]
|
|
},
|
|
"implementations": {
|
|
"required": ["concept", "tests", "documentation"],
|
|
"optional": ["examples", "extensions", "optimizations"]
|
|
},
|
|
"documentation": {
|
|
"required": ["overview", "details", "references"],
|
|
"optional": ["examples", "tutorials", "guides"]
|
|
}
|
|
}
|
|
```
|
|
|
|
#### Research Integration
|
|
```python
|
|
# @research_links
|
|
research_structure = {
|
|
"papers": {
|
|
"required": ["methodology", "results", "references"],
|
|
"optional": ["data", "code", "supplements"]
|
|
},
|
|
"experiments": {
|
|
"required": ["protocol", "data", "analysis"],
|
|
"optional": ["code", "results", "visualizations"]
|
|
},
|
|
"results": {
|
|
"required": ["data", "analysis", "conclusions"],
|
|
"optional": ["visualizations", "interpretations", "implications"]
|
|
}
|
|
}
|
|
```
|
|
|
|
## Validation Framework
|
|
|
|
### Link Validation Rules
|
|
```python
|
|
# @link_validation
|
|
def validate_links(document):
|
|
"""
|
|
Validate document links
|
|
|
|
Validation steps:
|
|
1. Check required links
|
|
2. Verify bidirectional links
|
|
3. Validate link types
|
|
4. Check link consistency
|
|
"""
|
|
required = check_required_links(document)
|
|
bidirectional = verify_bidirectional(document)
|
|
types = validate_link_types(document)
|
|
consistency = check_consistency(document)
|
|
|
|
return {
|
|
"required_complete": required,
|
|
"bidirectional_valid": bidirectional,
|
|
"types_valid": types,
|
|
"consistency_score": consistency
|
|
}
|
|
```
|
|
|
|
### Quality Metrics
|
|
```python
|
|
# @quality_metrics
|
|
link_quality = {
|
|
"completeness": {
|
|
"required_links": 0.95, # Required link coverage
|
|
"optional_links": 0.75, # Optional link coverage
|
|
"bidirectional": 0.90 # Bidirectional link completion
|
|
},
|
|
"consistency": {
|
|
"naming": 0.95, # Consistent naming
|
|
"structure": 0.90, # Structural consistency
|
|
"hierarchy": 0.85 # Hierarchical consistency
|
|
},
|
|
"validity": {
|
|
"broken_links": 0.0, # No broken links
|
|
"circular_refs": 0.0, # No circular references
|
|
"orphaned_docs": 0.0 # No orphaned documents
|
|
}
|
|
}
|
|
```
|
|
|
|
## Link Patterns
|
|
|
|
### Documentation Flow
|
|
```mermaid
|
|
graph TD
|
|
A[Concepts] --> B[Implementations]
|
|
B --> C[Documentation]
|
|
C --> D[Examples]
|
|
D --> E[Tests]
|
|
|
|
F[Research] --> G[Papers]
|
|
G --> H[Results]
|
|
H --> I[Knowledge Base]
|
|
```
|
|
|
|
### Knowledge Graph
|
|
```mermaid
|
|
graph LR
|
|
A[Core Concepts] --> B[Extensions]
|
|
B --> C[Implementations]
|
|
C --> D[Applications]
|
|
|
|
E[Research] --> F[Experiments]
|
|
F --> G[Results]
|
|
G --> H[Integration]
|
|
```
|
|
|
|
## Improvement Framework
|
|
|
|
### Link Enhancement
|
|
```python
|
|
# @link_enhancement
|
|
def enhance_links(document):
|
|
"""
|
|
Enhance document links
|
|
|
|
Enhancement steps:
|
|
1. Add missing required links
|
|
2. Complete bidirectional links
|
|
3. Add semantic annotations
|
|
4. Update link metadata
|
|
"""
|
|
pass
|
|
```
|
|
|
|
### Quality Monitoring
|
|
```python
|
|
# @quality_monitoring
|
|
def monitor_quality():
|
|
"""
|
|
Monitor link quality
|
|
|
|
Monitoring steps:
|
|
1. Track quality metrics
|
|
2. Identify issues
|
|
3. Generate reports
|
|
4. Suggest improvements
|
|
"""
|
|
pass
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
### 1. Link Organization
|
|
- Group related links logically
|
|
- Maintain consistent structure
|
|
- Use appropriate annotations
|
|
- Include validation blocks
|
|
|
|
### 2. Link Maintenance
|
|
- Regular link validation
|
|
- Update bidirectional links
|
|
- Remove obsolete links
|
|
- Add new relationships
|
|
|
|
### 3. Link Quality
|
|
- Clear relationship types
|
|
- Appropriate context
|
|
- Meaningful descriptions
|
|
- Proper categorization
|
|
|
|
## Related Documentation
|
|
- [[obsidian_linking]]
|
|
- [[ai_validation_framework]]
|
|
- [[documentation_standards]]
|
|
- [[knowledge_organization]]
|
|
|
|
## References
|
|
- [[linking_patterns]]
|
|
- [[validation_methods]]
|
|
- [[quality_assurance]]
|
|
- [[documentation_tools]] |