зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
339 строки
11 KiB
Markdown
339 строки
11 KiB
Markdown
# Model Implementation Guide
|
|
|
|
---
|
|
title: Model Implementation Guide
|
|
type: guide
|
|
status: stable
|
|
created: 2024-02-06
|
|
tags:
|
|
- implementation
|
|
- models
|
|
- development
|
|
- architecture
|
|
semantic_relations:
|
|
- type: implements
|
|
links:
|
|
- [[knowledge_base/cognitive/active_inference|Active Inference]]
|
|
- [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
|
|
- type: relates
|
|
links:
|
|
- [[docs/guides/implementation_patterns|Implementation Patterns]]
|
|
- [[docs/api/api_reference|API Reference]]
|
|
---
|
|
|
|
## Overview
|
|
|
|
This guide provides detailed instructions for implementing cognitive models based on the Active Inference framework. While the [[knowledge_base/cognitive/cognitive_science|knowledge base]] provides theoretical foundations, this guide focuses on practical implementation steps.
|
|
|
|
## Model Architecture
|
|
|
|
### Core Components
|
|
```python
|
|
# @model_architecture
|
|
class CognitiveModel:
|
|
"""
|
|
Core cognitive model implementation.
|
|
|
|
Theory: [[knowledge_base/cognitive/cognitive_phenomena#model-architecture|Model Architecture]]
|
|
Patterns: [[docs/guides/implementation_patterns#core-implementation-patterns|Implementation Patterns]]
|
|
"""
|
|
def __init__(self):
|
|
# Initialize core components
|
|
self.belief_model = BeliefModel() # [[belief_updating]]
|
|
self.policy_model = PolicyModel() # [[action_selection]]
|
|
self.perception_model = PerceptionModel() # [[perception_system]]
|
|
|
|
# Initialize state
|
|
self.initialize_state()
|
|
```
|
|
|
|
### State Management
|
|
```python
|
|
# @state_management
|
|
def initialize_state(self):
|
|
"""
|
|
Initialize model state.
|
|
|
|
Theory: [[knowledge_base/cognitive/predictive_processing#state-initialization|State Initialization]]
|
|
Implementation: [[docs/guides/implementation_patterns#state-management|State Management]]
|
|
"""
|
|
# Initialize belief states
|
|
self.beliefs = self._initialize_beliefs()
|
|
|
|
# Initialize action states
|
|
self.policies = self._initialize_policies()
|
|
|
|
# Initialize perception states
|
|
self.perception = self._initialize_perception()
|
|
```
|
|
|
|
## Implementation Steps
|
|
|
|
### 1. Belief System Implementation
|
|
```python
|
|
# @belief_implementation
|
|
class BeliefModel:
|
|
"""
|
|
Belief system implementation.
|
|
|
|
Theory:
|
|
- [[knowledge_base/cognitive/predictive_processing#belief-system|Belief System]]
|
|
- [[knowledge_base/cognitive/free_energy_principle#belief-dynamics|Belief Dynamics]]
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/bayesian_inference|Bayesian Inference]]
|
|
- [[knowledge_base/mathematics/variational_methods|Variational Methods]]
|
|
API: [[docs/api/api_reference#belief-updating-system|Belief Updating API]]
|
|
"""
|
|
def update_beliefs(self, observation: Observation) -> BeliefState:
|
|
"""
|
|
Update beliefs based on observation.
|
|
|
|
Theory:
|
|
- [[knowledge_base/cognitive/free_energy_principle#belief-updating|Belief Updating]]
|
|
- [[knowledge_base/cognitive/predictive_processing#prediction-error|Prediction Error]]
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/message_passing|Message Passing]]
|
|
- [[knowledge_base/mathematics/gradient_descent|Gradient Descent]]
|
|
Implementation:
|
|
- [[docs/api/matrix_operations#belief-update|Belief Update Operations]]
|
|
- [[docs/api/optimization_methods#belief-optimization|Belief Optimization]]
|
|
"""
|
|
# Compute prediction error using precision-weighted differences
|
|
prediction_error = self._compute_prediction_error(
|
|
observation,
|
|
method="precision_weighted" # [[knowledge_base/mathematics/precision_weighting]]
|
|
)
|
|
|
|
# Update beliefs using gradient descent on free energy
|
|
updated_beliefs = self._minimize_free_energy(
|
|
prediction_error,
|
|
optimizer="natural_gradient" # [[knowledge_base/mathematics/natural_gradients]]
|
|
)
|
|
|
|
return updated_beliefs
|
|
```
|
|
|
|
### 2. Policy Implementation
|
|
```python
|
|
# @policy_implementation
|
|
class PolicyModel:
|
|
"""
|
|
Policy selection implementation.
|
|
|
|
Theory:
|
|
- [[knowledge_base/cognitive/active_inference#policy-selection|Policy Selection]]
|
|
- [[knowledge_base/cognitive/free_energy_principle#action-selection|Action Selection]]
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]]
|
|
- [[knowledge_base/mathematics/information_theory|Information Theory]]
|
|
API: [[docs/api/api_reference#policy-selection|Policy Selection API]]
|
|
"""
|
|
def select_policy(self, beliefs: BeliefState) -> Policy:
|
|
"""
|
|
Select optimal policy.
|
|
|
|
Theory:
|
|
- [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]]
|
|
- [[knowledge_base/cognitive/active_inference#policy-optimization|Policy Optimization]]
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/path_integral|Path Integral Control]]
|
|
- [[knowledge_base/mathematics/softmax|Softmax Selection]]
|
|
Implementation:
|
|
- [[docs/api/optimization_methods#policy-selection|Policy Selection]]
|
|
- [[docs/api/probability_utils#softmax|Softmax Implementation]]
|
|
"""
|
|
# Generate policies using path integral sampling
|
|
policies = self._generate_policies(
|
|
method="path_integral" # [[knowledge_base/mathematics/path_sampling]]
|
|
)
|
|
|
|
# Evaluate expected free energy
|
|
policy_values = self._evaluate_policies(
|
|
policies,
|
|
method="expected_free_energy" # [[knowledge_base/mathematics/expected_free_energy]]
|
|
)
|
|
|
|
# Select using precision-weighted softmax
|
|
optimal_policy = self._select_optimal_policy(
|
|
policy_values,
|
|
method="precision_softmax" # [[knowledge_base/mathematics/precision_weighted_selection]]
|
|
)
|
|
|
|
return optimal_policy
|
|
```
|
|
|
|
### 3. Perception Implementation
|
|
```python
|
|
# @perception_implementation
|
|
class PerceptionModel:
|
|
"""
|
|
Perception system implementation.
|
|
|
|
Theory:
|
|
- [[knowledge_base/cognitive/predictive_processing#perception|Perception]]
|
|
- [[knowledge_base/cognitive/free_energy_principle#perceptual-inference|Perceptual Inference]]
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/hierarchical_inference|Hierarchical Inference]]
|
|
- [[knowledge_base/mathematics/message_passing|Message Passing]]
|
|
API: [[docs/api/api_reference#perception-system|Perception API]]
|
|
"""
|
|
def process_observation(self, sensory_input: Input) -> Observation:
|
|
"""
|
|
Process sensory input.
|
|
|
|
Theory:
|
|
- [[knowledge_base/cognitive/predictive_processing#sensory-processing|Sensory Processing]]
|
|
- [[knowledge_base/cognitive/active_inference#perception|Active Inference Perception]]
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/error_propagation|Error Propagation]]
|
|
- [[knowledge_base/mathematics/precision_weighting|Precision Weighting]]
|
|
Implementation:
|
|
- [[docs/api/matrix_operations#error-computation|Error Computation]]
|
|
- [[docs/api/probability_utils#precision-scaling|Precision Scaling]]
|
|
"""
|
|
# Preprocess input using hierarchical processing
|
|
processed_input = self._preprocess_input(
|
|
sensory_input,
|
|
method="hierarchical" # [[knowledge_base/mathematics/hierarchical_processing]]
|
|
)
|
|
|
|
# Generate predictions using generative model
|
|
predictions = self._generate_predictions(
|
|
method="top_down" # [[knowledge_base/cognitive/predictive_processing#top-down-predictions]]
|
|
)
|
|
|
|
# Compare with predictions using precision-weighted errors
|
|
observation = self._compare_with_predictions(
|
|
processed_input,
|
|
predictions,
|
|
method="precision_weighted" # [[knowledge_base/mathematics/precision_weighting]]
|
|
)
|
|
|
|
return observation
|
|
```
|
|
|
|
## Integration Guidelines
|
|
|
|
### 1. Component Integration
|
|
```python
|
|
# @component_integration
|
|
def integrate_components(self):
|
|
"""
|
|
Integrate model components.
|
|
|
|
See [[docs/guides/system_integration|System Integration]]
|
|
"""
|
|
# Connect belief system
|
|
self._connect_belief_system()
|
|
|
|
# Connect policy system
|
|
self._connect_policy_system()
|
|
|
|
# Connect perception system
|
|
self._connect_perception_system()
|
|
```
|
|
|
|
### 2. Data Flow
|
|
```python
|
|
# @data_flow
|
|
def process_cycle(self, input_data: Input) -> Action:
|
|
"""
|
|
Process single cognitive cycle.
|
|
|
|
Theory: [[knowledge_base/cognitive/active_inference#cognitive-cycle|Cognitive Cycle]]
|
|
"""
|
|
# Process perception
|
|
observation = self.perception_model.process_observation(input_data)
|
|
|
|
# Update beliefs
|
|
beliefs = self.belief_model.update_beliefs(observation)
|
|
|
|
# Select policy
|
|
policy = self.policy_model.select_policy(beliefs)
|
|
|
|
# Get action
|
|
action = policy.get_action()
|
|
|
|
return action
|
|
```
|
|
|
|
## Validation Framework
|
|
|
|
### 1. Model Validation
|
|
```python
|
|
# @model_validation
|
|
def validate_model(self) -> ValidationResult:
|
|
"""
|
|
Validate model implementation.
|
|
|
|
See [[docs/guides/validation_guide|Validation Guide]]
|
|
"""
|
|
# Validate components
|
|
component_validation = self._validate_components()
|
|
|
|
# Validate integration
|
|
integration_validation = self._validate_integration()
|
|
|
|
# Validate behavior
|
|
behavior_validation = self._validate_behavior()
|
|
|
|
return ValidationResult(
|
|
component_validation,
|
|
integration_validation,
|
|
behavior_validation
|
|
)
|
|
```
|
|
|
|
### 2. Testing Framework
|
|
```python
|
|
# @testing_framework
|
|
def test_model(self) -> TestResults:
|
|
"""
|
|
Test model implementation.
|
|
|
|
See [[docs/guides/testing_guide|Testing Guide]]
|
|
"""
|
|
# Run unit tests
|
|
unit_results = self._run_unit_tests()
|
|
|
|
# Run integration tests
|
|
integration_results = self._run_integration_tests()
|
|
|
|
# Run system tests
|
|
system_results = self._run_system_tests()
|
|
|
|
return TestResults(
|
|
unit_results,
|
|
integration_results,
|
|
system_results
|
|
)
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
### 1. Implementation Guidelines
|
|
- Follow [[docs/guides/implementation_patterns|Implementation Patterns]]
|
|
- Use [[docs/guides/code_organization|Code Organization]]
|
|
- Apply [[docs/guides/documentation_standards|Documentation Standards]]
|
|
|
|
### 2. Performance Optimization
|
|
- Implement [[docs/guides/performance_optimization|Optimization Guidelines]]
|
|
- Monitor [[docs/guides/performance_metrics|Performance Metrics]]
|
|
- Profile using [[docs/guides/profiling_guide|Profiling Guide]]
|
|
|
|
### 3. Quality Assurance
|
|
- Follow [[docs/guides/testing_guide|Testing Guidelines]]
|
|
- Use [[docs/guides/validation_framework|Validation Framework]]
|
|
- Review with [[docs/guides/code_review|Code Review Process]]
|
|
|
|
## Related Documentation
|
|
- [[knowledge_base/cognitive/cognitive_science|Cognitive Science Theory]]
|
|
- [[docs/api/api_reference|API Reference]]
|
|
- [[docs/guides/implementation_patterns|Implementation Patterns]]
|
|
- [[docs/guides/system_integration|System Integration]]
|
|
|
|
## References
|
|
- [[knowledge_base/cognitive/active_inference|Active Inference]]
|
|
- [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
|
|
- [[knowledge_base/cognitive/predictive_processing|Predictive Processing]]
|
|
- [[docs/concepts/theoretical_foundations|Theoretical Foundations]] |