зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
9.4 KiB
9.4 KiB
BioFirm_Active_Inference_Integration
Overview
The BioFirm framework implements a specialized application of the cognitive/free_energy_principle and cognitive/active_inference for bioregional stewardship. This document outlines the key theoretical and practical connections between these frameworks.
Core Theoretical Connections
1. cognitive/active_inference#Markov_Blankets in BioFirm
- Hierarchical Implementation
- Local ecosystem blankets (mathematics/information_geometry)
- Landscape-level blankets (mathematics/differential_geometry)
- Regional/bioregional blankets (mathematics/category_theory)
- Cross-Scale Interactions
- Vertical information flow (mathematics/information_theory)
- Horizontal coupling (cognitive/complex_systems_biology)
- Emergence patterns (cognitive/emergence_self_organization)
2. cognitive/free_energy_principle Application
- Variational Free Energy (mathematics/variational_methods)
- Ecological surprise minimization (mathematics/information_theory#Surprise)
- Multi-scale belief updating (cognitive/belief_initialization)
- Adaptive parameter learning (cognitive/learning_mechanisms)
- System Boundaries
- Ecological boundaries (systems/systems_theory#Boundaries)
- Social system interfaces (cognitive/social_cognition)
- Economic interactions (systems/Social-Ecological_Systems)
3. cognitive/predictive_processing
- State Space Representation (mathematics/measure_theory)
- Ecological states (mathematics/probability_theory)
- Climate dynamics (mathematics/differential_geometry)
- Social-economic factors (cognitive/social_cognition_detailed)
- Transition Dynamics
- Ecosystem processes (mathematics/path_integral_theory)
- Climate patterns (mathematics/statistical_foundations)
- Social-ecological interactions (systems/Social-Ecological_Systems)
Implementation Framework
1. cognitive/hierarchical_processing
class HierarchicalProcessor:
"""Implements hierarchical active inference processing"""
def __init__(self, scales: List[str]):
self.scales = scales
self.processors = {
scale: ScaleProcessor(scale) for scale in scales
}
self.couplings = self._initialize_couplings()
def process_hierarchy(self, observations: Dict[str, np.ndarray]):
"""Process observations across hierarchical levels"""
beliefs = {}
for scale in self.scales:
beliefs[scale] = self.processors[scale].update_beliefs(
observations[scale],
self._get_messages(scale, beliefs)
)
return beliefs
2. cognitive/belief_propagation
class BeliefPropagator:
"""Implements belief propagation for active inference"""
def __init__(self, network: nx.Graph):
self.network = network
self.messages = defaultdict(dict)
def propagate_beliefs(self,
initial_beliefs: Dict[str, np.ndarray],
max_iterations: int = 100):
"""Propagate beliefs through network"""
for _ in range(max_iterations):
self._update_messages()
self._update_beliefs()
if self._check_convergence():
break
3. cognitive/adaptive_control
class AdaptiveController:
"""Implements adaptive control for active inference"""
def __init__(self,
control_params: Dict[str, Any],
learning_rate: float = 0.01):
self.params = control_params
self.learning_rate = learning_rate
def adapt_control(self,
performance: PerformanceMetrics,
context: SystemContext):
"""Adapt control parameters based on performance"""
gradient = self._compute_gradient(performance)
self._update_params(gradient)
self._store_adaptation(context)
Mathematical Framework
1. mathematics/variational_free_energy
The variational free energy is defined as:
F = E_q[ln q(s) - ln p(s,o)]
where:
- q(s): Variational density over states (mathematics/variational_methods)
- p(s,o): Generative model (cognitive/predictive_coding)
- s: System states (mathematics/state_space_theory)
- o: Observations (cognitive/perceptual_inference)
2. mathematics/expected_free_energy
The expected free energy for policy selection:
G = E_q[ln q(s') - ln p(s',o')]
where:
- s': Future states (mathematics/path_integral_theory)
- o': Expected observations (cognitive/predictive_perception)
- G: Expected free energy (mathematics/efe_components)
3. mathematics/policy_selection
Optimal policy selection through minimization:
π* = argmin_π G(π)
where:
- π: Policy/intervention (cognitive/action_selection)
- G(π): Expected free energy under policy (mathematics/expected_free_energy)
Integration Patterns
1. systems/cross_scale_integration
class CrossScaleIntegrator:
"""Manages integration across scales"""
def __init__(self, scales: List[str]):
self.scales = scales
self.integrators = {
scale: ScaleIntegrator(scale) for scale in scales
}
def integrate_scales(self,
states: Dict[str, BioregionalState],
couplings: Dict[Tuple[str, str], float]):
"""Integrate states across scales"""
integrated_states = {}
for scale in self.scales:
integrated_states[scale] = self.integrators[scale].integrate(
states[scale],
self._get_coupled_states(scale, states, couplings)
)
return integrated_states
2. systems/temporal_integration
class TemporalIntegrator:
"""Manages temporal integration of states"""
def __init__(self,
temporal_horizon: int,
integration_method: str = 'euler'):
self.horizon = temporal_horizon
self.method = integration_method
def integrate_trajectory(self,
initial_state: BioregionalState,
dynamics: SystemDynamics) -> List[BioregionalState]:
"""Integrate system trajectory through time"""
trajectory = [initial_state]
for t in range(self.horizon):
next_state = self._step_forward(
trajectory[-1],
dynamics
)
trajectory.append(next_state)
return trajectory
3. systems/domain_integration
class DomainIntegrator:
"""Manages integration across domains"""
def __init__(self, domains: List[str]):
self.domains = domains
self.couplings = self._initialize_couplings()
def integrate_domains(self,
domain_states: Dict[str, np.ndarray]) -> BioregionalState:
"""Integrate states across domains"""
integrated_state = BioregionalState()
for domain in self.domains:
integrated_state = self._update_state(
integrated_state,
domain,
domain_states[domain]
)
return integrated_state
Extensions and Future Directions
1. cognitive/meta_learning
- Advanced parameter adaptation (cognitive/parameter_learning)
- Structure learning mechanisms (cognitive/structure_learning)
- Cross-domain transfer (cognitive/transfer_learning)
2. systems/resilience_patterns
- Adaptive capacity enhancement (systems/adaptive_capacity)
- Recovery mechanisms (systems/recovery_dynamics)
- Transformation pathways (systems/transformation_theory)
3. cognitive/collective_intelligence
- Multi-agent coordination (cognitive/swarm_intelligence)
- Distributed learning (cognitive/distributed_learning)
- Emergent behavior (systems/emergence)