cognitive/knowledge_base/cognitive/schema_integration.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

6.2 KiB
Исходник Постоянная ссылка Ответственный История

title type status created tags semantic_relations
Schema Integration knowledge_base stable 2024-02-11
cognition
memory
knowledge
learning
type links
implements
memory_systems
type links
extends
knowledge_organization
type links
related
active_inference
free_energy_principle
memory_consolidation
semantic_memory

Schema Integration

Schema integration represents the process by which new information is incorporated into existing knowledge structures. Within the active inference framework, it implements hierarchical model updating through precision-weighted prediction errors that optimize the balance between existing schemas and new evidence.

Mathematical Foundations

Schema Dynamics

  1. Integration Process

    S'(t) = S(t) + α(E(t) - P(t))W(t)
    

    where:

    • S'(t) is updated schema
    • S(t) is current schema
    • E(t) is new evidence
    • P(t) is prediction
    • W(t) is precision weight
    • α is learning rate
  2. Prediction Error

    ε(t) = E(t) - P(S(t))
    

    where:

    • ε(t) is prediction error
    • E(t) is evidence
    • P(S(t)) is schema prediction

Knowledge Organization

  1. Hierarchical Structure

    P(h|e) = P(e|h)P(h)/P(e)
    

    where:

    • h represents hierarchical level
    • e represents evidence
    • P(h) is prior probability
    • P(e|h) is likelihood
  2. Integration Cost

    C(S,E) = D_KL(P(S')||P(S)) + λH(S')
    

    where:

    • D_KL is KL divergence
    • H is entropy
    • λ is complexity cost
    • S,S' are old/new schemas

Core Mechanisms

Integration Processes

  1. Schema Updating

    • Pattern matching
    • Conflict detection
    • Error correction
    • Knowledge revision
    • Structure maintenance
  2. Knowledge Organization

    • Hierarchical arrangement
    • Category formation
    • Relation mapping
    • Context binding
    • Pattern abstraction

Control Operations

  1. Integration Control

    • Conflict resolution
    • Resource allocation
    • Priority setting
    • Error management
    • Performance optimization
  2. Schema Selection

    • Relevance assessment
    • Context matching
    • Goal alignment
    • Cost evaluation
    • Benefit analysis

Active Inference Implementation

Model Optimization

  1. Prediction Refinement

    • Schema predictions
    • Error computation
    • Precision updating
    • Model selection
    • Integration control
  2. Hierarchical Learning

    • Level coordination
    • Cross-scale binding
    • Pattern extraction
    • Structure updating
    • Error minimization

Information Processing

  1. Evidence Accumulation

    • Pattern detection
    • Schema matching
    • Context integration
    • Error assessment
    • Model updating
  2. Resource Management

    • Processing priorities
    • Energy allocation
    • Computational costs
    • Integration efficiency
    • Error handling

Neural Implementation

Network Architecture

  1. Core Networks

    • Prefrontal cortex
    • Temporal cortex
    • Hippocampus
    • Integration hubs
    • Control systems
  2. Processing Streams

    • Schema activation
    • Pattern matching
    • Integration circuits
    • Error processing
    • Control pathways

Circuit Mechanisms

  1. Neural Operations

    • Pattern completion
    • Schema activation
    • Integration control
    • Error detection
    • Performance modulation
  2. Network Dynamics

    • State transitions
    • Information flow
    • Error correction
    • Integration patterns
    • Control signals

Behavioral Effects

Integration Characteristics

  1. Processing Features

    • Schema influence
    • Integration speed
    • Error patterns
    • Transfer effects
    • Learning curves
  2. Performance Impact

    • Processing efficiency
    • Memory enhancement
    • Error reduction
    • Transfer benefits
    • Generalization capacity

Individual Differences

  1. Integration Ability

    • Processing speed
    • Learning rate
    • Error handling
    • Transfer capacity
    • Adaptation skill
  2. State Factors

    • Knowledge base
    • Cognitive load
    • Motivation level
    • Attention state
    • Stress effects

Clinical Applications

Integration Disorders

  1. Deficit Patterns

    • Schema rigidity
    • Integration failure
    • Transfer problems
    • Learning difficulties
    • Error persistence
  2. Assessment Methods

    • Integration tests
    • Schema evaluation
    • Transfer measures
    • Learning assessment
    • Error analysis

Intervention Approaches

  1. Treatment Strategies

    • Schema flexibility
    • Integration training
    • Transfer enhancement
    • Learning support
    • Error reduction
  2. Rehabilitation Methods

    • Strategy development
    • Pattern practice
    • Integration exercises
    • Transfer training
    • Error correction

Research Methods

Experimental Paradigms

  1. Integration Tasks

    • Schema tests
    • Transfer paradigms
    • Learning measures
    • Error assessment
    • Process tracking
  2. Measurement Approaches

    • Performance metrics
    • Integration indices
    • Transfer measures
    • Learning rates
    • Error patterns

Analysis Techniques

  1. Behavioral Analysis

    • Performance metrics
    • Error patterns
    • Learning curves
    • Transfer effects
    • Individual differences
  2. Neural Measures

    • Activity patterns
    • Connectivity changes
    • State dynamics
    • Integration indices
    • Error signals

Future Directions

  1. Theoretical Development

    • Model refinement
    • Integration theories
    • Process understanding
    • Individual differences
    • Mechanism clarification
  2. Clinical Advances

    • Assessment methods
    • Treatment strategies
    • Intervention techniques
    • Recovery protocols
    • Support systems
  3. Technological Innovation

    • Measurement tools
    • Training systems
    • Assessment technology
    • Intervention methods
    • Support applications

References