зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
7.9 KiB
7.9 KiB
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | ||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Complex Systems | concept | stable | 2024-03-15 | advanced | 1 |
|
|
Complex Systems
Overview
Complex Systems are collections of interacting components that exhibit emergent behavior, self-organization, and adaptive properties. These systems are characterized by nonlinear dynamics, feedback loops, and collective phenomena that cannot be understood by studying individual components in isolation.
Mathematical Foundation
Emergence and Self-Organization
Order Parameters
\Psi = f(\{x_i\}_{i=1}^N)
where:
\Psiis order parameterx_iare microscopic variablesfis emergence function
Collective Dynamics
\dot{x}_i = F(x_i, \{x_j\}_{j \neq i}, \Psi)
where:
\dot{x}_iis time derivativeFis interaction function\Psiis order parameter
Implementation
System Components
class ComplexSystem:
def __init__(self,
n_components: int,
interaction_matrix: np.ndarray,
noise_strength: float = 0.1):
"""Initialize complex system.
Args:
n_components: Number of components
interaction_matrix: Component interactions
noise_strength: Noise magnitude
"""
self.n = n_components
self.W = interaction_matrix
self.noise = noise_strength
# Initialize states
self.states = np.random.randn(n_components)
# Initialize order parameters
self.order_params = self.compute_order_parameters()
def compute_order_parameters(self) -> Dict[str, float]:
"""Compute system order parameters.
Returns:
params: Order parameters
"""
params = {
'mean_field': np.mean(self.states),
'synchronization': self.compute_synchronization(),
'clustering': self.compute_clustering(),
'entropy': self.compute_entropy()
}
return params
def update_states(self,
dt: float = 0.1) -> None:
"""Update component states.
Args:
dt: Time step
"""
# Compute interactions
interactions = self.W @ self.states
# Add noise
noise = self.noise * np.random.randn(self.n)
# Update states
self.states += dt * (interactions + noise)
# Update order parameters
self.order_params = self.compute_order_parameters()
Emergence Analysis
class EmergenceAnalyzer:
def __init__(self,
system: ComplexSystem):
"""Initialize emergence analyzer.
Args:
system: Complex system
"""
self.system = system
def compute_mutual_information(self) -> float:
"""Compute mutual information between components.
Returns:
mi: Mutual information
"""
# Estimate joint distribution
joint_hist = np.histogram2d(
self.system.states[:-1],
self.system.states[1:],
bins=20
)[0]
# Normalize to probabilities
joint_probs = joint_hist / np.sum(joint_hist)
# Compute marginals
p_x = np.sum(joint_probs, axis=1)
p_y = np.sum(joint_probs, axis=0)
# Compute mutual information
mi = 0
for i in range(len(p_x)):
for j in range(len(p_y)):
if joint_probs[i,j] > 0:
mi += joint_probs[i,j] * np.log2(
joint_probs[i,j] / (p_x[i] * p_y[j])
)
return mi
def detect_phase_transitions(self,
control_param: np.ndarray) -> List[float]:
"""Detect phase transitions.
Args:
control_param: Control parameter values
Returns:
transitions: Transition points
"""
# Store order parameters
order_params = []
# Scan control parameter
for param in control_param:
self.system.update_control_parameter(param)
self.system.equilibrate()
order_params.append(
self.system.order_params['mean_field']
)
# Detect transitions
transitions = self.find_discontinuities(
control_param, order_params
)
return transitions
Collective Behavior
class CollectiveDynamics:
def __init__(self,
n_agents: int,
interaction_range: float):
"""Initialize collective dynamics.
Args:
n_agents: Number of agents
interaction_range: Interaction radius
"""
self.n = n_agents
self.r = interaction_range
# Initialize positions and velocities
self.pos = np.random.randn(n_agents, 2)
self.vel = np.random.randn(n_agents, 2)
def update(self,
dt: float = 0.1) -> None:
"""Update agent states.
Args:
dt: Time step
"""
# Compute pairwise distances
distances = spatial.distance.pdist(self.pos)
distances = spatial.distance.squareform(distances)
# Find neighbors
neighbors = distances < self.r
# Update velocities
for i in range(self.n):
# Get neighbor indices
nbrs = np.where(neighbors[i])[0]
if len(nbrs) > 0:
# Compute alignment force
align = np.mean(self.vel[nbrs], axis=0)
# Compute cohesion force
cohesion = np.mean(self.pos[nbrs], axis=0) - self.pos[i]
# Compute separation force
separation = np.sum([
(self.pos[i] - self.pos[j]) / (distances[i,j] + 1e-6)
for j in nbrs
], axis=0)
# Update velocity
self.vel[i] += dt * (
align + cohesion + separation
)
# Update positions
self.pos += dt * self.vel
Applications
Biological Systems
Neural Networks
- Collective computation
- Pattern formation
- Learning dynamics
- Information processing
Ecosystems
- Population dynamics
- Species interactions
- Biodiversity patterns
- Stability analysis
Social Systems
Opinion Dynamics
- Consensus formation
- Polarization
- Information cascades
- Social contagion
Economic Systems
- Market dynamics
- Network effects
- Resource allocation
- Innovation diffusion
Best Practices
Modeling
- Identify key components
- Define interactions
- Specify dynamics
- Include noise/fluctuations
Analysis
- Multiple scales
- Order parameters
- Phase transitions
- Stability analysis
Simulation
- Numerical methods
- Time scales
- Boundary conditions
- Initial conditions
Common Issues
Technical Challenges
- Nonlinear dynamics
- Multiple time scales
- Parameter sensitivity
- Computational cost
Solutions
- Reduced models
- Multi-scale methods
- Robust algorithms
- Parallel simulation