зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
5.7 KiB
5.7 KiB
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | ||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Conditional Independence | concept | stable | 2024-03-15 | intermediate | 1 |
|
|
Conditional Independence
Overview
Conditional Independence is a fundamental concept in probability theory and statistics that describes when the occurrence of one event provides no information about another event, given knowledge of a third event. This concept is crucial for understanding probabilistic graphical models, Markov blankets, and efficient inference algorithms.
Mathematical Foundation
Definition
Two random variables X and Y are conditionally independent given Z if:
P(X,Y|Z) = P(X|Z)P(Y|Z)
Equivalently:
P(X|Y,Z) = P(X|Z)
Properties
Chain Rule Decomposition
P(X_1,...,X_n) = \prod_{i=1}^n P(X_i|X_{1:i-1})
D-separation
For nodes X, Y, Z in a Bayesian network:
X \perp\!\!\!\perp Y | Z \iff P(X|Y,Z) = P(X|Z)
Implementation
Testing Conditional Independence
class ConditionalIndependenceTester:
def __init__(self,
data: np.ndarray,
alpha: float = 0.05):
"""Initialize CI tester.
Args:
data: Data matrix
alpha: Significance level
"""
self.data = data
self.alpha = alpha
def partial_correlation_test(self,
x: int,
y: int,
z: List[int]) -> bool:
"""Test CI using partial correlation.
Args:
x: First variable index
y: Second variable index
z: Conditioning set indices
Returns:
is_independent: Whether variables are CI
"""
# Compute partial correlation
corr = self.compute_partial_correlation(x, y, z)
# Fisher z-transform
z_score = self.fisher_z_transform(corr, len(self.data))
# Test significance
return abs(z_score) < stats.norm.ppf(1 - self.alpha/2)
def mutual_information_test(self,
x: int,
y: int,
z: List[int]) -> bool:
"""Test CI using conditional mutual information.
Args:
x: First variable index
y: Second variable index
z: Conditioning set indices
Returns:
is_independent: Whether variables are CI
"""
# Estimate conditional mutual information
cmi = self.estimate_cmi(x, y, z)
# Apply threshold test
return cmi < self.compute_threshold()
Graphical Model Implementation
class ConditionalIndependenceGraph:
def __init__(self,
n_nodes: int):
"""Initialize CI graph.
Args:
n_nodes: Number of nodes
"""
self.n_nodes = n_nodes
self.adjacency = np.zeros((n_nodes, n_nodes))
self.separating_sets = {}
def add_edge(self,
i: int,
j: int):
"""Add edge between nodes.
Args:
i: First node
j: Second node
"""
self.adjacency[i,j] = 1
self.adjacency[j,i] = 1
def find_separating_set(self,
i: int,
j: int) -> Set[int]:
"""Find separating set between nodes.
Args:
i: First node
j: Second node
Returns:
sep_set: Separating set
"""
# Implement separation set search
pass
def is_conditionally_independent(self,
i: int,
j: int,
z: Set[int]) -> bool:
"""Check if nodes are conditionally independent.
Args:
i: First node
j: Second node
z: Conditioning set
Returns:
is_ci: Whether nodes are CI
"""
return self._check_separation(i, j, z)
Applications
Structure Learning
PC Algorithm
- Start with complete graph
- Remove edges based on CI tests
- Orient remaining edges
- Infer causal structure
FCI Algorithm
- Handle latent confounders
- Test ancestral relationships
- Build PAG representation
Probabilistic Inference
Belief Propagation
- Message passing
- Factor graph operations
- Marginal computation
Variational Inference
- Mean field approximation
- Factorized distributions
- Evidence lower bound
Best Practices
Testing
- Choose appropriate test
- Consider sample size
- Handle multiple testing
- Validate assumptions
Implementation
- Efficient data structures
- Numerical stability
- Sparse representations
- Caching results
Validation
- Cross-validation
- Robustness checks
- Sensitivity analysis
- Benchmark comparison
Common Issues
Technical Challenges
- Finite sample effects
- Curse of dimensionality
- Computational complexity
- Numerical precision
Solutions
- Regularization
- Efficient algorithms
- Approximation methods
- Robust statistics