зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
12 KiB
12 KiB
Differential Geometry in Cognitive Modeling
type: mathematical_concept id: differential_geometry_001 created: 2024-02-06 modified: 2024-02-06 tags: [mathematics, differential-geometry, manifolds, connections] aliases: [riemannian-geometry, geometric-mechanics] semantic_relations:
- type: implements links:
- type: uses links:
- type: documented_by links:
Overview
Differential geometry provides the mathematical foundation for understanding the geometric structure of state spaces and belief manifolds in cognitive modeling. This document explores differential geometric concepts and their applications in active inference.
Manifold Theory
Differentiable Manifolds
class DifferentiableManifold:
"""
Differentiable manifold implementation.
Theory:
- [[manifold_theory]]
- [[differential_topology]]
- [[smooth_structures]]
Mathematics:
- [[topology]]
- [[calculus_on_manifolds]]
"""
def __init__(self,
dimension: int,
atlas: Dict[str, Chart]):
self.dim = dimension
self.atlas = atlas
self._validate_smooth_structure()
def coordinate_change(self,
chart1: str,
chart2: str,
point: np.ndarray) -> np.ndarray:
"""Change coordinates between charts."""
if not self._charts_overlap(chart1, chart2):
raise ValueError("Charts do not overlap")
return self._compute_transition(chart1, chart2, point)
def tangent_space(self,
point: np.ndarray,
chart: str) -> TangentSpace:
"""Get tangent space at point."""
return self._construct_tangent_space(point, chart)
Riemannian Metrics
class RiemannianMetric:
"""
Riemannian metric implementation.
Theory:
- [[riemannian_geometry]]
- [[metric_tensor]]
- [[inner_product]]
Mathematics:
- [[differential_geometry]]
- [[tensor_calculus]]
"""
def __init__(self,
manifold: DifferentiableManifold):
self.manifold = manifold
def metric_tensor(self,
point: np.ndarray,
chart: str) -> np.ndarray:
"""Compute metric tensor at point."""
# Get coordinate basis
basis = self._coordinate_basis(point, chart)
# Compute components
g = self._compute_metric_components(basis)
return g
def distance(self,
p: np.ndarray,
q: np.ndarray,
chart: str) -> float:
"""Compute Riemannian distance."""
# Find geodesic
gamma = self._solve_geodesic_equation(p, q)
# Compute length
return self._compute_curve_length(gamma)
Connections and Transport
Levi-Civita Connection
class LeviCivitaConnection:
"""
Levi-Civita connection implementation.
Theory:
- [[riemannian_connection]]
- [[parallel_transport]]
- [[geodesics]]
Mathematics:
- [[differential_geometry]]
- [[tensor_calculus]]
"""
def __init__(self,
metric: RiemannianMetric):
self.metric = metric
def christoffel_symbols(self,
point: np.ndarray,
chart: str) -> np.ndarray:
"""Compute Christoffel symbols."""
# Metric and derivatives
g = self.metric.metric_tensor(point, chart)
dg = self._metric_derivatives(point, chart)
# Compute symbols
gamma = self._compute_christoffel(g, dg)
return gamma
def parallel_transport(self,
vector: np.ndarray,
curve: Curve) -> np.ndarray:
"""Parallel transport vector along curve."""
return self._solve_parallel_transport(vector, curve)
Geodesic Flow
class GeodesicFlow:
"""
Geodesic flow implementation.
Theory:
- [[geodesic_equation]]
- [[exponential_map]]
- [[hamiltonian_flow]]
Mathematics:
- [[differential_geometry]]
- [[symplectic_geometry]]
"""
def __init__(self,
connection: LeviCivitaConnection):
self.connection = connection
def geodesic(self,
initial_point: np.ndarray,
initial_velocity: np.ndarray,
time: float) -> np.ndarray:
"""Compute geodesic flow."""
# Geodesic equation
def geodesic_equation(t, state):
x, v = state[:self.dim], state[self.dim:]
gamma = self.connection.christoffel_symbols(x)
return np.concatenate([v, -gamma.dot(v).dot(v)])
# Solve ODE
solution = solve_ivp(
geodesic_equation,
(0, time),
np.concatenate([initial_point, initial_velocity])
)
return solution.y[:self.dim, -1]
Curvature Theory
Riemann Curvature
class RiemannCurvature:
"""
Riemann curvature implementation.
Theory:
- [[curvature_tensor]]
- [[sectional_curvature]]
- [[ricci_curvature]]
Mathematics:
- [[differential_geometry]]
- [[tensor_calculus]]
"""
def __init__(self,
connection: LeviCivitaConnection):
self.connection = connection
def curvature_tensor(self,
point: np.ndarray,
chart: str) -> np.ndarray:
"""Compute Riemann curvature tensor."""
# Connection coefficients
gamma = self.connection.christoffel_symbols(point, chart)
# Compute components
R = self._compute_riemann_components(gamma)
return R
def sectional_curvature(self,
point: np.ndarray,
plane: np.ndarray,
chart: str) -> float:
"""Compute sectional curvature."""
# Curvature tensor
R = self.curvature_tensor(point, chart)
# Project onto plane
K = self._compute_sectional(R, plane)
return K
Lie Theory
Lie Groups
class LieGroup:
"""
Lie group implementation.
Theory:
- [[lie_groups]]
- [[lie_algebras]]
- [[exponential_map]]
Mathematics:
- [[differential_geometry]]
- [[group_theory]]
"""
def __init__(self,
dimension: int,
multiplication: Callable):
self.dim = dimension
self.multiply = multiplication
def lie_algebra_basis(self) -> List[np.ndarray]:
"""Get Lie algebra basis."""
return self._compute_basis()
def exponential(self,
X: np.ndarray) -> np.ndarray:
"""Compute Lie group exponential."""
return self._compute_exponential(X)
def adjoint(self,
g: np.ndarray,
X: np.ndarray) -> np.ndarray:
"""Compute adjoint action."""
return self._compute_adjoint(g, X)
Principal Bundles
class PrincipalBundle:
"""
Principal bundle implementation.
Theory:
- [[fiber_bundles]]
- [[principal_connections]]
- [[gauge_theory]]
Mathematics:
- [[differential_geometry]]
- [[lie_theory]]
"""
def __init__(self,
base: DifferentiableManifold,
structure_group: LieGroup):
self.base = base
self.group = structure_group
def local_trivialization(self,
point: np.ndarray,
chart: str) -> Tuple[np.ndarray, np.ndarray]:
"""Get local trivialization."""
return self._compute_trivialization(point, chart)
def connection_form(self,
point: np.ndarray,
chart: str) -> np.ndarray:
"""Get connection 1-form."""
return self._compute_connection_form(point, chart)
Applications to Active Inference
Belief Manifolds
class BeliefManifold:
"""
Belief manifold implementation.
Theory:
- [[statistical_manifolds]]
- [[information_geometry]]
- [[belief_space]]
Mathematics:
- [[differential_geometry]]
- [[probability_theory]]
"""
def __init__(self,
dimension: int,
probability_model: ProbabilityModel):
self.dim = dimension
self.model = probability_model
def fisher_metric(self,
belief: np.ndarray) -> np.ndarray:
"""Compute Fisher information metric."""
return self._compute_fisher_metric(belief)
def natural_gradient(self,
belief: np.ndarray,
gradient: np.ndarray) -> np.ndarray:
"""Compute natural gradient."""
G = self.fisher_metric(belief)
return np.linalg.solve(G, gradient)
Free Energy Geometry
class FreeEnergyGeometry:
"""
Free energy geometric structure.
Theory:
- [[free_energy_principle]]
- [[information_geometry]]
- [[optimal_control]]
Mathematics:
- [[differential_geometry]]
- [[symplectic_geometry]]
"""
def __init__(self,
belief_manifold: BeliefManifold,
free_energy: Callable):
self.manifold = belief_manifold
self.F = free_energy
def free_energy_metric(self,
belief: np.ndarray) -> np.ndarray:
"""Compute metric induced by free energy."""
# Fisher metric
G_fisher = self.manifold.fisher_metric(belief)
# Free energy Hessian
H = self._free_energy_hessian(belief)
return G_fisher + H
def hamiltonian_flow(self,
initial_belief: np.ndarray,
time: float) -> np.ndarray:
"""Compute Hamiltonian flow of free energy."""
return self._solve_hamilton_equations(initial_belief, time)
Implementation Considerations
Numerical Methods
# @numerical_methods
numerical_implementations = {
"geodesics": {
"runge_kutta": "4th order RK method",
"symplectic": "Symplectic integrators",
"variational": "Variational integrators"
},
"curvature": {
"finite_differences": "Numerical derivatives",
"automatic_differentiation": "AD for tensors",
"symbolic": "Symbolic computation"
},
"parallel_transport": {
"schild": "Schild's ladder method",
"pole": "Pole ladder method",
"numerical": "Direct integration"
}
}
Computational Efficiency
# @efficiency_considerations
efficiency_methods = {
"metric_computation": {
"caching": "Cache metric tensors",
"approximation": "Low-rank approximations",
"sparsity": "Exploit sparsity patterns"
},
"geodesic_computation": {
"adaptive": "Adaptive step size",
"local": "Local coordinate systems",
"parallel": "Parallel transport methods"
},
"curvature_computation": {
"lazy": "Lazy tensor evaluation",
"symmetry": "Exploit symmetries",
"distributed": "Parallel computation"
}
}
Documentation Links
- ../../docs/research/research_documentation_index
- ../../docs/guides/implementation_guides_index
- ../../docs/api/api_documentation_index
- ../../docs/examples/usage_examples_index
References
- do_carmo - Riemannian Geometry
- lee - Introduction to Smooth Manifolds
- kobayashi_nomizu - Foundations of Differential Geometry
- marsden_ratiu - Introduction to Mechanics and Symmetry