зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
16 KiB
16 KiB
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dynamical Systems | concept | stable | 2024-03-15 | advanced | 1 |
|
|
Dynamical Systems
Overview
Dynamical Systems theory provides a mathematical framework for understanding how systems evolve over time. It forms the foundation for analyzing complex behaviors in physical, biological, and cognitive systems, from neural dynamics to ecological interactions.
Mathematical Foundation
State Space Dynamics
Continuous Systems
\dot{x} = f(x,t)
where:
xis state vectorfis vector fieldtis time
Discrete Systems
x_{n+1} = F(x_n)
where:
x_nis state at step nFis map function
Stability Analysis
Linear Stability
\dot{\delta x} = A\delta x
where:
\delta xis perturbationAis Jacobian matrix
Lyapunov Functions
\dot{V}(x) < 0
where:
V(x)is Lyapunov function
Implementation
Dynamical System
class DynamicalSystem:
def __init__(self,
vector_field: Callable,
dimension: int,
parameters: Dict[str, float]):
"""Initialize dynamical system.
Args:
vector_field: System dynamics function
dimension: State space dimension
parameters: System parameters
"""
self.f = vector_field
self.dim = dimension
self.params = parameters
# Initialize state
self.state = np.zeros(dimension)
self.time = 0.0
def step(self,
dt: float = 0.01) -> np.ndarray:
"""Evolve system one step.
Args:
dt: Time step
Returns:
state: Updated state
"""
# RK4 integration
k1 = self.f(self.state, self.time)
k2 = self.f(self.state + dt/2 * k1, self.time + dt/2)
k3 = self.f(self.state + dt/2 * k2, self.time + dt/2)
k4 = self.f(self.state + dt * k3, self.time + dt)
# Update state
self.state += dt/6 * (k1 + 2*k2 + 2*k3 + k4)
self.time += dt
return self.state
def simulate(self,
duration: float,
dt: float = 0.01) -> Tuple[np.ndarray, np.ndarray]:
"""Simulate system trajectory.
Args:
duration: Simulation duration
dt: Time step
Returns:
times: Time points
states: State trajectory
"""
n_steps = int(duration / dt)
times = np.linspace(0, duration, n_steps)
states = np.zeros((n_steps, self.dim))
for i in range(n_steps):
states[i] = self.step(dt)
return times, states
Stability Analysis
class StabilityAnalyzer:
def __init__(self,
system: DynamicalSystem):
"""Initialize stability analyzer.
Args:
system: Dynamical system
"""
self.system = system
def compute_jacobian(self,
x: np.ndarray,
epsilon: float = 1e-6) -> np.ndarray:
"""Compute Jacobian matrix.
Args:
x: State point
epsilon: Finite difference step
Returns:
J: Jacobian matrix
"""
J = np.zeros((self.system.dim, self.system.dim))
for i in range(self.system.dim):
x_plus = x.copy()
x_plus[i] += epsilon
x_minus = x.copy()
x_minus[i] -= epsilon
J[:,i] = (self.system.f(x_plus, 0) -
self.system.f(x_minus, 0)) / (2 * epsilon)
return J
def analyze_fixed_point(self,
x: np.ndarray) -> Dict[str, Any]:
"""Analyze fixed point stability.
Args:
x: Fixed point
Returns:
analysis: Stability analysis
"""
# Compute Jacobian
J = self.compute_jacobian(x)
# Compute eigenvalues
eigenvals = np.linalg.eigvals(J)
# Determine stability
stable = np.all(np.real(eigenvals) < 0)
return {
'eigenvalues': eigenvals,
'stable': stable,
'jacobian': J
}
Bifurcation Analysis
class BifurcationAnalyzer:
def __init__(self,
system: DynamicalSystem,
param_name: str):
"""Initialize bifurcation analyzer.
Args:
system: Dynamical system
param_name: Bifurcation parameter name
"""
self.system = system
self.param = param_name
def compute_diagram(self,
param_range: np.ndarray,
n_transients: int = 1000,
n_samples: int = 100) -> Dict[str, np.ndarray]:
"""Compute bifurcation diagram.
Args:
param_range: Parameter values
n_transients: Transient steps
n_samples: Number of samples
Returns:
diagram: Bifurcation diagram data
"""
bifurcation_data = []
for p in param_range:
# Update parameter
self.system.params[self.param] = p
# Run transients
for _ in range(n_transients):
self.system.step()
# Collect samples
samples = []
for _ in range(n_samples):
self.system.step()
samples.append(self.system.state.copy())
bifurcation_data.append(samples)
return {
'parameter': param_range,
'states': np.array(bifurcation_data)
}
Applications
Physical Systems
Mechanical Systems
- Pendulum dynamics
- Orbital motion
- Vibration analysis
- Wave propagation
Field Theories
- Fluid dynamics
- Electromagnetic fields
- Quantum systems
- Reaction-diffusion
Biological Systems
Neural Dynamics
- Action potentials
- Neural populations
- Synaptic plasticity
- Brain rhythms
Ecological Systems
- Population dynamics
- Predator-prey models
- Ecosystem stability
- Resource competition
Cognitive Systems
Neural Processing
- Sensory integration
- Motor control
- Decision making
- Learning dynamics
Collective Behavior
- Social dynamics
- Opinion formation
- Cultural evolution
- Emergent patterns
Advanced Topics
Chaos Theory
- Sensitivity to conditions
- Strange attractors
- Fractal dimensions
- Lyapunov exponents
Synchronization
- Phase locking
- Coupled oscillators
- Network synchrony
- Chimera states
Control Theory
- Stabilization
- Tracking
- Optimal control
- Adaptive control
Best Practices
Modeling
- Choose appropriate scales
- Identify key variables
- Define interactions
- Validate assumptions
Analysis
- Phase space analysis
- Stability assessment
- Bifurcation tracking
- Numerical validation
Implementation
- Robust integration
- Error control
- Parameter handling
- State monitoring
Common Issues
Technical Challenges
- Stiffness
- Numerical instability
- Chaos detection
- Parameter sensitivity
Solutions
- Adaptive stepping
- Implicit methods
- Robust algorithms
- Sensitivity analysis
Related Documentation
- control_theory
- differential_equations
- complex_systems
- statistical_physics
- neural_dynamics
- network_science
- ecological_systems
Learning Paths
1. Mathematical Foundations (4 weeks)
Week 1: Calculus and Linear Algebra
- calculus
- Derivatives and integrals
- Vector calculus
- Differential forms
- linear_algebra
- Vector spaces
- Linear transformations
- Eigenvalue analysis
Week 2: Differential Equations
- differential_equations
- First-order systems
- Linear systems
- Phase plane analysis
- partial_differential_equations
- Boundary value problems
- Initial value problems
- Method of characteristics
Week 3: Geometry and Topology
- differential_geometry
- Manifolds
- Vector fields
- Lie derivatives
- topology
- Fixed point theory
- Index theory
- Morse theory
Week 4: Measure Theory and Probability
- measure_theory
- Measurable spaces
- Integration theory
- Lebesgue measures
- probability_theory
- Random variables
- Stochastic processes
- Ergodic theory
2. Core Dynamical Systems (6 weeks)
Week 1-2: Linear Systems
- State Space Analysis
def analyze_linear_system(A: np.ndarray) -> Dict[str, Any]: """Analyze linear system dx/dt = Ax.""" eigenvals, eigenvecs = np.linalg.eig(A) stability = np.all(np.real(eigenvals) < 0) return { 'eigenvalues': eigenvals, 'eigenvectors': eigenvecs, 'stable': stability } - Stability Theory
- Normal Forms
- Floquet Theory
Week 3-4: Nonlinear Systems
- Phase Space Analysis
def compute_phase_portrait(system: DynamicalSystem, grid: np.ndarray) -> np.ndarray: """Compute phase portrait on grid.""" vector_field = np.zeros_like(grid) for i, point in enumerate(grid): vector_field[i] = system.f(point, 0) return vector_field - Bifurcation Theory
- Center Manifolds
- Normal Forms
Week 5-6: Chaos and Complexity
- Chaos Theory
def compute_lyapunov_exponent(system: DynamicalSystem, trajectory: np.ndarray, perturbation: float = 1e-6) -> float: """Compute maximal Lyapunov exponent.""" n_steps = len(trajectory) exponents = np.zeros(n_steps) for i in range(n_steps): # Compute local expansion rate J = system.compute_jacobian(trajectory[i]) eigenvals = np.linalg.eigvals(J) exponents[i] = np.max(np.real(eigenvals)) return np.mean(exponents) - Strange Attractors
- Fractal Dimensions
- Symbolic Dynamics
3. Advanced Applications (8 weeks)
Week 1-2: Physical Systems
- Classical Mechanics
class HamiltonianSystem(DynamicalSystem): """Hamiltonian system implementation.""" def __init__(self, hamiltonian: Callable): self.H = hamiltonian def f(self, state: np.ndarray, t: float) -> np.ndarray: """Compute Hamilton's equations.""" q, p = np.split(state, 2) dH_dq = grad(self.H, 0)(q, p) dH_dp = grad(self.H, 1)(q, p) return np.concatenate([dH_dp, -dH_dq]) - Quantum Systems
- Field Theories
- Fluid Dynamics
Week 3-4: Biological Systems
- Population Dynamics
class LotkaVolterra(DynamicalSystem): """Predator-prey dynamics.""" def __init__(self, alpha: float, beta: float, gamma: float, delta: float): self.params = { 'alpha': alpha, # Prey growth rate 'beta': beta, # Predation rate 'gamma': gamma, # Predator death rate 'delta': delta # Predator growth rate } def f(self, state: np.ndarray, t: float) -> np.ndarray: """Compute population changes.""" x, y = state # Prey, predator populations dx = self.params['alpha']*x - self.params['beta']*x*y dy = -self.params['gamma']*y + self.params['delta']*x*y return np.array([dx, dy]) - Neural Dynamics
- Molecular Systems
- Ecosystem Dynamics
Week 5-6: Control and Optimization
- Optimal Control
class OptimalController: """Linear quadratic regulator.""" def __init__(self, A: np.ndarray, B: np.ndarray, Q: np.ndarray, R: np.ndarray): self.A = A # System matrix self.B = B # Input matrix self.Q = Q # State cost self.R = R # Control cost def compute_control_law(self) -> np.ndarray: """Solve Riccati equation for optimal control.""" P = solve_continuous_are(self.A, self.B, self.Q, self.R) K = np.linalg.inv(self.R) @ self.B.T @ P return K - Feedback Control
- Adaptive Control
- Reinforcement Learning
Week 7-8: Complex Systems
- Network Dynamics
class NetworkDynamics(DynamicalSystem): """Coupled dynamical systems on networks.""" def __init__(self, adjacency: np.ndarray, node_dynamics: Callable, coupling: float): self.A = adjacency self.f_node = node_dynamics self.coupling = coupling def f(self, state: np.ndarray, t: float) -> np.ndarray: """Compute network evolution.""" individual = np.array([self.f_node(x) for x in state]) coupling = self.coupling * (self.A @ state) return individual + coupling - Collective Behavior
- Pattern Formation
- Self-Organization
4. Specialized Topics (4 weeks)
Week 1: Computational Methods
- Numerical Integration
class AdaptiveIntegrator: """Adaptive step size integration.""" def __init__(self, system: DynamicalSystem, tolerance: float = 1e-6): self.system = system self.tol = tolerance def step(self, state: np.ndarray, dt: float) -> Tuple[np.ndarray, float]: """Take adaptive step with error control.""" # Compute two steps of different order k1 = dt * self.system.f(state, 0) k2 = dt * self.system.f(state + k1/2, dt/2) # Estimate error error = np.linalg.norm(k2 - k1) # Adjust step size if error > self.tol: dt *= 0.5 elif error < self.tol/10: dt *= 2.0 return state + k2, dt - Perturbation Methods
- Asymptotic Analysis
- Computer Algebra
Week 2: Data Analysis
- Time Series Analysis
- State Space Reconstruction
- System Identification
- Machine Learning Methods
Week 3: Stochastic Systems
- Random Dynamical Systems
- Noise-Induced Transitions
- Stochastic Resonance
- Fokker-Planck Equations
Week 4: Quantum Dynamics
- Quantum Maps
- Open Quantum Systems
- Quantum Control
- Decoherence
5. Research and Applications
Project Ideas
-
Physical Systems
- Double pendulum chaos
- Fluid turbulence models
- Quantum state control
- Plasma dynamics
-
Biological Systems
- Neural network dynamics
- Gene regulatory networks
- Population cycles
- Ecosystem stability
-
Engineering Applications
- Robot control systems
- Power grid stability
- Chemical reactors
- Vehicle dynamics
-
Complex Systems
- Financial market models
- Social network dynamics
- Urban growth patterns
- Climate system models
Research Methods
-
Theoretical Analysis
- Mathematical proofs
- Asymptotic analysis
- Perturbation theory
- Bifurcation analysis
-
Computational Studies
- Numerical simulations
- Parameter studies
- Sensitivity analysis
- Visualization methods
-
Experimental Design
- Data collection
- System identification
- Model validation
- Error analysis
-
Applications
- Real-world systems
- Engineering design
- Control implementation
- Performance optimization