Daniel Ari Friedman 7ca29024d8 Updates
2025-02-12 13:23:51 -08:00

5.6 KiB

title type status created complexity processing_priority tags semantic_relations
Markov Blanket concept stable 2024-03-15 intermediate 1
mathematics
probability
graphical_models
statistical_independence
type links
foundation_for
free_energy_principle
active_inference
type links
implements
conditional_independence
probabilistic_graphical_models
type links
relates
information_theory
bayesian_networks
statistical_physics

Markov Blanket

Overview

A Markov Blanket defines the boundary of conditional independence in probabilistic systems. In the context of biological and cognitive systems, it provides a mathematical formalization of the separation between internal and external states while accounting for their interactions through sensory and active states.

Mathematical Foundation

Definition

For a node X in a probabilistic graphical model, its Markov Blanket MB(X) consists of:

  • Parents of X
  • Children of X
  • Other parents of X's children
P(X|MB(X), Y) = P(X|MB(X))

where Y represents any other variables in the system.

Formal Properties

Conditional Independence

class MarkovBlanket:
    def __init__(self, node_set: Set[str], edges: List[Tuple[str, str]]):
        """Initialize Markov Blanket.
        
        Args:
            node_set: Set of node names
            edges: List of directed edges
        """
        self.nodes = node_set
        self.edges = edges
        self.graph = self._build_graph()
    
    def get_markov_blanket(self, node: str) -> Set[str]:
        """Compute Markov Blanket for node.
        
        Args:
            node: Target node
            
        Returns:
            blanket: Set of nodes in Markov Blanket
        """
        parents = self.get_parents(node)
        children = self.get_children(node)
        spouses = self.get_spouses(node)
        
        return parents.union(children).union(spouses)
    
    def verify_conditional_independence(self,
                                     node: str,
                                     other: str,
                                     blanket: Set[str]) -> bool:
        """Verify conditional independence property.
        
        Args:
            node: Target node
            other: Other node
            blanket: Markov Blanket
            
        Returns:
            is_independent: Whether conditional independence holds
        """
        # Implementation would depend on probability model
        pass

Applications

Biological Systems

Cell Membranes

  • Physical boundaries
  • Selective permeability
  • Information processing

Neural Networks

  • Functional modules
  • Information integration
  • Hierarchical organization

Cognitive Systems

Perception

  • Sensory boundaries
  • Active inference
  • Predictive processing

Action

  • Motor control
  • Environmental interaction
  • Behavioral policies

Implementation

Statistical Implementation

class MarkovBlanketSystem:
    def __init__(self,
                 internal_dim: int,
                 external_dim: int,
                 sensory_dim: int,
                 active_dim: int):
        """Initialize Markov Blanket system.
        
        Args:
            internal_dim: Internal state dimension
            external_dim: External state dimension
            sensory_dim: Sensory state dimension
            active_dim: Active state dimension
        """
        self.internal_dim = internal_dim
        self.external_dim = external_dim
        self.sensory_dim = sensory_dim
        self.active_dim = active_dim
        
        # Initialize state distributions
        self.init_states()
    
    def init_states(self):
        """Initialize state distributions."""
        # Internal states
        self.internal_states = torch.zeros(self.internal_dim)
        
        # External states
        self.external_states = torch.zeros(self.external_dim)
        
        # Blanket states
        self.sensory_states = torch.zeros(self.sensory_dim)
        self.active_states = torch.zeros(self.active_dim)
    
    def update_states(self,
                     dt: float = 0.1):
        """Update system states.
        
        Args:
            dt: Time step
        """
        # Update sensory states based on external states
        self.update_sensory()
        
        # Update internal states based on sensory states
        self.update_internal()
        
        # Update active states based on internal states
        self.update_active()
        
        # Update external states based on active states
        self.update_external()
    
    def compute_free_energy(self) -> torch.Tensor:
        """Compute variational free energy.
        
        Returns:
            F: Free energy value
        """
        # Implementation would follow FEP formulation
        pass

Best Practices

Model Design

  1. Clear boundary definition
  2. State space separation
  3. Interaction specification
  4. Conservation laws

Implementation

  1. Proper initialization
  2. State management
  3. Update scheduling
  4. Energy tracking

Validation

  1. Independence testing
  2. Boundary integrity
  3. Information flow
  4. Energy minimization

Common Issues

Technical Challenges

  1. State coupling
  2. Boundary leakage
  3. Update instability
  4. Energy divergence

Solutions

  1. Careful initialization
  2. Robust boundaries
  3. Stable dynamics
  4. Energy constraints