зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
5.6 KiB
5.6 KiB
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | ||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Markov Blanket | concept | stable | 2024-03-15 | intermediate | 1 |
|
|
Markov Blanket
Overview
A Markov Blanket defines the boundary of conditional independence in probabilistic systems. In the context of biological and cognitive systems, it provides a mathematical formalization of the separation between internal and external states while accounting for their interactions through sensory and active states.
Mathematical Foundation
Definition
For a node X in a probabilistic graphical model, its Markov Blanket MB(X) consists of:
- Parents of X
- Children of X
- Other parents of X's children
P(X|MB(X), Y) = P(X|MB(X))
where Y represents any other variables in the system.
Formal Properties
Conditional Independence
class MarkovBlanket:
def __init__(self, node_set: Set[str], edges: List[Tuple[str, str]]):
"""Initialize Markov Blanket.
Args:
node_set: Set of node names
edges: List of directed edges
"""
self.nodes = node_set
self.edges = edges
self.graph = self._build_graph()
def get_markov_blanket(self, node: str) -> Set[str]:
"""Compute Markov Blanket for node.
Args:
node: Target node
Returns:
blanket: Set of nodes in Markov Blanket
"""
parents = self.get_parents(node)
children = self.get_children(node)
spouses = self.get_spouses(node)
return parents.union(children).union(spouses)
def verify_conditional_independence(self,
node: str,
other: str,
blanket: Set[str]) -> bool:
"""Verify conditional independence property.
Args:
node: Target node
other: Other node
blanket: Markov Blanket
Returns:
is_independent: Whether conditional independence holds
"""
# Implementation would depend on probability model
pass
Applications
Biological Systems
Cell Membranes
- Physical boundaries
- Selective permeability
- Information processing
Neural Networks
- Functional modules
- Information integration
- Hierarchical organization
Cognitive Systems
Perception
- Sensory boundaries
- Active inference
- Predictive processing
Action
- Motor control
- Environmental interaction
- Behavioral policies
Implementation
Statistical Implementation
class MarkovBlanketSystem:
def __init__(self,
internal_dim: int,
external_dim: int,
sensory_dim: int,
active_dim: int):
"""Initialize Markov Blanket system.
Args:
internal_dim: Internal state dimension
external_dim: External state dimension
sensory_dim: Sensory state dimension
active_dim: Active state dimension
"""
self.internal_dim = internal_dim
self.external_dim = external_dim
self.sensory_dim = sensory_dim
self.active_dim = active_dim
# Initialize state distributions
self.init_states()
def init_states(self):
"""Initialize state distributions."""
# Internal states
self.internal_states = torch.zeros(self.internal_dim)
# External states
self.external_states = torch.zeros(self.external_dim)
# Blanket states
self.sensory_states = torch.zeros(self.sensory_dim)
self.active_states = torch.zeros(self.active_dim)
def update_states(self,
dt: float = 0.1):
"""Update system states.
Args:
dt: Time step
"""
# Update sensory states based on external states
self.update_sensory()
# Update internal states based on sensory states
self.update_internal()
# Update active states based on internal states
self.update_active()
# Update external states based on active states
self.update_external()
def compute_free_energy(self) -> torch.Tensor:
"""Compute variational free energy.
Returns:
F: Free energy value
"""
# Implementation would follow FEP formulation
pass
Best Practices
Model Design
- Clear boundary definition
- State space separation
- Interaction specification
- Conservation laws
Implementation
- Proper initialization
- State management
- Update scheduling
- Energy tracking
Validation
- Independence testing
- Boundary integrity
- Information flow
- Energy minimization
Common Issues
Technical Challenges
- State coupling
- Boundary leakage
- Update instability
- Energy divergence
Solutions
- Careful initialization
- Robust boundaries
- Stable dynamics
- Energy constraints