зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
8.9 KiB
8.9 KiB
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | ||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Non-Equilibrium Thermodynamics | concept | stable | 2024-03-15 | advanced | 1 |
|
|
Non-Equilibrium Thermodynamics
Overview
Non-Equilibrium Thermodynamics extends classical thermodynamics to systems far from equilibrium, providing a framework for understanding self-organization, dissipative structures, and the emergence of order in biological and cognitive systems.
Mathematical Foundation
Entropy Production
Local Balance
\frac{\partial s}{\partial t} + \nabla \cdot J_s = \sigma
where:
sis entropy densityJ_sis entropy flux\sigmais entropy production rate
Onsager Relations
J_i = \sum_j L_{ij}X_j
where:
J_iare fluxesX_jare forcesL_{ij}are Onsager coefficients
Implementation
Non-Equilibrium System
class NonEquilibriumSystem:
def __init__(self,
state_dim: int,
force_matrix: np.ndarray,
diffusion_matrix: np.ndarray):
"""Initialize non-equilibrium system.
Args:
state_dim: State dimension
force_matrix: Deterministic forces
diffusion_matrix: Noise coupling
"""
self.dim = state_dim
self.F = force_matrix
self.D = diffusion_matrix
# Initialize state
self.state = np.zeros(state_dim)
# Initialize thermodynamic quantities
self.entropy = 0.0
self.entropy_production = 0.0
self.entropy_flux = 0.0
def update_state(self,
dt: float = 0.01) -> None:
"""Update system state.
Args:
dt: Time step
"""
# Deterministic update
drift = self.F @ self.state
# Stochastic update
noise = np.random.randn(self.dim)
diffusion = self.D @ noise
# Update state
self.state += dt * drift + np.sqrt(dt) * diffusion
# Update thermodynamic quantities
self.update_thermodynamics(dt)
def update_thermodynamics(self,
dt: float) -> None:
"""Update thermodynamic quantities.
Args:
dt: Time step
"""
# Compute entropy production
forces = self.F @ self.state
fluxes = self.D @ self.D.T @ forces
self.entropy_production = np.sum(forces * fluxes) * dt
# Compute entropy flux
self.entropy_flux = self.compute_entropy_flux(dt)
# Update entropy
self.entropy += self.entropy_production - self.entropy_flux
def compute_entropy_flux(self,
dt: float) -> float:
"""Compute entropy flux.
Args:
dt: Time step
Returns:
flux: Entropy flux
"""
# Implementation depends on system specifics
pass
Fluctuation Analysis
class FluctuationAnalyzer:
def __init__(self,
system: NonEquilibriumSystem):
"""Initialize fluctuation analyzer.
Args:
system: Non-equilibrium system
"""
self.system = system
self.trajectories = []
def sample_trajectories(self,
n_samples: int,
duration: float,
dt: float = 0.01) -> np.ndarray:
"""Sample system trajectories.
Args:
n_samples: Number of trajectories
duration: Trajectory duration
dt: Time step
Returns:
trajectories: Sampled trajectories
"""
n_steps = int(duration / dt)
trajectories = np.zeros((n_samples, n_steps, self.system.dim))
for i in range(n_samples):
# Reset system
self.system.state = np.zeros(self.system.dim)
# Generate trajectory
for t in range(n_steps):
self.system.update_state(dt)
trajectories[i,t] = self.system.state.copy()
self.trajectories = trajectories
return trajectories
def compute_fluctuation_theorem(self,
time_window: int) -> Dict[str, np.ndarray]:
"""Compute fluctuation theorem statistics.
Args:
time_window: Analysis window size
Returns:
stats: Fluctuation statistics
"""
# Compute entropy production
s_prod = np.zeros((len(self.trajectories), len(self.trajectories[0])-time_window))
for i, traj in enumerate(self.trajectories):
for t in range(len(traj)-time_window):
window = traj[t:t+time_window]
s_prod[i,t] = self.compute_window_entropy_production(window)
# Compute probability ratio
p_forward = np.histogram(s_prod.flatten(), bins=50, density=True)[0]
p_backward = np.histogram(-s_prod.flatten(), bins=50, density=True)[0]
return {
'entropy_production': s_prod,
'p_forward': p_forward,
'p_backward': p_backward
}
Dissipative Structure Analysis
class DissipativeStructure:
def __init__(self,
spatial_dim: Tuple[int, int],
diffusion_coeff: float,
reaction_rates: np.ndarray):
"""Initialize dissipative structure model.
Args:
spatial_dim: Spatial dimensions
diffusion_coeff: Diffusion coefficient
reaction_rates: Reaction rate constants
"""
self.dim = spatial_dim
self.D = diffusion_coeff
self.k = reaction_rates
# Initialize fields
self.concentration = np.random.rand(*spatial_dim)
self.chemical_potential = np.zeros(spatial_dim)
def update(self,
dt: float = 0.01) -> None:
"""Update structure state.
Args:
dt: Time step
"""
# Compute diffusion
laplacian = self.compute_laplacian()
diffusion = self.D * laplacian
# Compute reactions
reactions = self.compute_reactions()
# Update concentration
self.concentration += dt * (diffusion + reactions)
# Update chemical potential
self.update_chemical_potential()
def compute_laplacian(self) -> np.ndarray:
"""Compute Laplacian operator.
Returns:
laplacian: Laplacian of concentration field
"""
# Finite difference approximation
laplacian = np.zeros_like(self.concentration)
# Interior points
laplacian[1:-1,1:-1] = (
self.concentration[:-2,1:-1] +
self.concentration[2:,1:-1] +
self.concentration[1:-1,:-2] +
self.concentration[1:-1,2:] -
4 * self.concentration[1:-1,1:-1]
)
return laplacian
def compute_reactions(self) -> np.ndarray:
"""Compute reaction terms.
Returns:
reactions: Reaction contribution
"""
# Implementation depends on specific reaction network
pass
Applications
Biological Systems
Cell Biology
- Membrane transport
- Metabolic networks
- Signal transduction
- Cell division
Development
- Pattern formation
- Morphogenesis
- Tissue organization
- Growth dynamics
Cognitive Systems
Neural Dynamics
- Action potentials
- Synaptic plasticity
- Network formation
- Information processing
Active Inference
- Free energy minimization
- Belief updating
- Action selection
- Learning dynamics
Best Practices
Modeling
- Identify relevant scales
- Define boundary conditions
- Specify constraints
- Include fluctuations
Analysis
- Track energy flows
- Monitor entropy production
- Validate steady states
- Check conservation laws
Implementation
- Stable integration
- Noise handling
- Boundary treatment
- Conservation checks
Common Issues
Technical Challenges
- Multiple time scales
- Numerical instability
- Boundary effects
- Conservation violations
Solutions
- Multi-scale methods
- Implicit schemes
- Buffer regions
- Constraint projection