зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
14 KiB
14 KiB
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | ||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Optimization Theory | concept | stable | 2024-03-15 | advanced | 1 |
|
|
Optimization Theory
Overview
Optimization Theory provides the mathematical foundation for finding the best solutions to problems under given constraints. It forms a crucial bridge between theoretical principles and practical implementations in control theory, machine learning, and cognitive systems, particularly in understanding how systems minimize free energy and maximize performance.
Mathematical Foundation
Unconstrained Optimization
Gradient Descent
x_{k+1} = x_k - \alpha_k \nabla f(x_k)
where:
x_kis current point\alpha_kis step size\nabla fis gradient
Newton's Method
x_{k+1} = x_k - [\nabla^2 f(x_k)]^{-1}\nabla f(x_k)
where:
\nabla^2 fis Hessian matrix
Constrained Optimization
Lagrangian
L(x,\lambda) = f(x) + \sum_i \lambda_i g_i(x)
where:
f(x)is objective functiong_i(x)are constraints\lambda_iare Lagrange multipliers
KKT Conditions
\begin{align*}
\nabla_x L(x^*,\lambda^*) &= 0 \\
g_i(x^*) &\leq 0 \\
\lambda_i^* g_i(x^*) &= 0 \\
\lambda_i^* &\geq 0
\end{align*}
Implementation
Gradient-Based Optimizer
class GradientOptimizer:
def __init__(self,
learning_rate: float = 0.01,
momentum: float = 0.9,
nesterov: bool = False):
"""Initialize gradient optimizer.
Args:
learning_rate: Learning rate
momentum: Momentum coefficient
nesterov: Whether to use Nesterov momentum
"""
self.lr = learning_rate
self.momentum = momentum
self.nesterov = nesterov
self.velocity = None
def step(self,
params: np.ndarray,
grads: np.ndarray) -> np.ndarray:
"""Perform optimization step.
Args:
params: Current parameters
grads: Parameter gradients
Returns:
new_params: Updated parameters
"""
if self.velocity is None:
self.velocity = np.zeros_like(params)
# Update velocity
self.velocity = (self.momentum * self.velocity +
self.lr * grads)
if self.nesterov:
# Nesterov update
update = (self.momentum * self.velocity +
self.lr * grads)
else:
# Standard update
update = self.velocity
return params - update
Second-Order Optimizer
class NewtonOptimizer:
def __init__(self,
damping: float = 1e-4,
max_iter: int = 100):
"""Initialize Newton optimizer.
Args:
damping: Hessian damping factor
max_iter: Maximum iterations
"""
self.damping = damping
self.max_iter = max_iter
def step(self,
params: np.ndarray,
grad_fn: Callable,
hess_fn: Callable) -> np.ndarray:
"""Perform Newton optimization step.
Args:
params: Current parameters
grad_fn: Gradient function
hess_fn: Hessian function
Returns:
new_params: Updated parameters
"""
grad = grad_fn(params)
hess = hess_fn(params)
# Add damping
hess += self.damping * np.eye(len(params))
# Compute Newton direction
try:
direction = np.linalg.solve(hess, -grad)
except np.linalg.LinAlgError:
# Fallback to gradient descent
direction = -grad
return params + direction
Constrained Optimizer
class ConstrainedOptimizer:
def __init__(self,
constraints: List[Callable],
penalty_weight: float = 1.0,
weight_growth: float = 2.0):
"""Initialize constrained optimizer.
Args:
constraints: List of constraint functions
penalty_weight: Initial penalty weight
weight_growth: Penalty weight growth factor
"""
self.constraints = constraints
self.weight = penalty_weight
self.growth = weight_growth
# Initialize base optimizer
self.base_optimizer = GradientOptimizer()
def augmented_lagrangian(self,
x: np.ndarray,
lambda_: np.ndarray) -> float:
"""Compute augmented Lagrangian.
Args:
x: Current point
lambda_: Lagrange multipliers
Returns:
L: Augmented Lagrangian value
"""
# Objective
L = self.objective(x)
# Constraint terms
for i, g in enumerate(self.constraints):
c = g(x)
L += lambda_[i] * c + 0.5 * self.weight * c**2
return L
def step(self,
x: np.ndarray,
lambda_: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Perform optimization step.
Args:
x: Current point
lambda_: Current multipliers
Returns:
new_x: Updated point
new_lambda: Updated multipliers
"""
# Minimize augmented Lagrangian
def grad_L(x):
return self.grad_augmented_lagrangian(x, lambda_)
x_new = self.base_optimizer.step(x, grad_L(x))
# Update multipliers
lambda_new = np.array([
max(0, lambda_[i] + self.weight * g(x_new))
for i, g in enumerate(self.constraints)
])
# Update penalty weight
self.weight *= self.growth
return x_new, lambda_new
Applications
Physical Systems
Energy Minimization
- Mechanical equilibrium
- Potential energy
- Variational principles
- Path optimization
Control Systems
- Optimal control
- Model predictive control
- Trajectory optimization
- Resource allocation
Machine Learning
Neural Networks
- Loss minimization
- Weight optimization
- Architecture search
- Hyperparameter tuning
Probabilistic Models
- Maximum likelihood
- Variational inference
- Expectation maximization
- Bayesian optimization
Cognitive Systems
Active Inference
- Free energy minimization
- Belief updating
- Policy optimization
- Learning and inference
Decision Making
- Utility maximization
- Risk minimization
- Multi-objective optimization
- Sequential decision making
Advanced Topics
Convex Optimization
- Linear programming
- Quadratic programming
- Semidefinite programming
- Interior point methods
Stochastic Optimization
- Stochastic gradient descent
- Evolutionary algorithms
- Simulated annealing
- Particle swarm optimization
Distributed Optimization
- Consensus algorithms
- Decomposition methods
- Federated learning
- Multi-agent optimization
Best Practices
Problem Formulation
- Identify objectives
- Define constraints
- Choose variables
- Select algorithm
Implementation
- Initialize properly
- Handle constraints
- Monitor convergence
- Validate solutions
Validation
- Optimality conditions
- Constraint satisfaction
- Numerical stability
- Solution quality
Common Issues
Technical Challenges
- Local minima
- Ill-conditioning
- Constraint violations
- Numerical instability
Solutions
- Multiple initializations
- Regularization
- Constraint relaxation
- Robust algorithms
Related Documentation
- control_theory
- statistical_physics
- machine_learning
- active_inference
- variational_inference
- dynamical_systems
Variational Methods
Free Energy Optimization
class FreeEnergyOptimizer:
"""
Optimize variational free energy.
Theory:
- [[variational_methods]]
- [[free_energy_principle]]
Mathematics:
- [[information_theory]]
- [[natural_gradients]]
"""
def __init__(self,
model: GenerativeModel,
learning_rate: float = 0.01):
self.model = model
self.lr = learning_rate
self.history = []
def minimize_free_energy(self,
observation: np.ndarray,
initial_belief: np.ndarray,
n_iterations: int = 100) -> np.ndarray:
"""Minimize variational free energy."""
belief = initial_belief.copy()
for i in range(n_iterations):
# Compute free energy and gradient
F, grad = self.compute_free_energy_gradient(
observation, belief
)
# Natural gradient update
belief = self.natural_gradient_update(belief, grad)
# Track progress
self.history.append(F)
# Check convergence
if self._check_convergence():
break
return belief
Policy Optimization
class PolicyOptimizer:
"""
Optimize policies using expected free energy.
Theory:
- [[active_inference_pomdp]]
- [[expected_free_energy]]
Mathematics:
- [[path_integral]]
- [[information_theory]]
"""
def __init__(self,
model: ActiveInferenceModel,
temperature: float = 1.0):
self.model = model
self.temperature = temperature
def optimize_policy(self,
belief_state: np.ndarray,
policies: List[np.ndarray]) -> np.ndarray:
"""Optimize policy selection."""
# Compute expected free energy for each policy
G = np.array([
self.compute_expected_free_energy(belief_state, pi)
for pi in policies
])
# Softmax policy selection
p = self.softmax_policy_selection(G)
return p
Gradient Methods
Natural Gradient Descent
class NaturalGradientOptimizer:
"""
Natural gradient optimization.
Theory:
- [[natural_gradients]]
- [[information_geometry]]
Mathematics:
- [[fisher_information]]
- [[riemannian_geometry]]
"""
def __init__(self,
learning_rate: float = 0.1,
damping: float = 1e-4):
self.lr = learning_rate
self.damping = damping
def compute_natural_gradient(self,
params: np.ndarray,
grad: np.ndarray,
fisher: np.ndarray) -> np.ndarray:
"""Compute natural gradient direction."""
# Add damping to Fisher matrix
fisher_damped = fisher + self.damping * np.eye(fisher.shape[0])
# Solve linear system for natural gradient
natural_grad = np.linalg.solve(fisher_damped, grad)
return natural_grad
Stochastic Optimization
class StochasticOptimizer:
"""
Stochastic optimization methods.
Theory:
- [[stochastic_optimization]]
- [[monte_carlo_methods]]
Mathematics:
- [[stochastic_approximation]]
- [[variance_reduction]]
"""
def __init__(self,
learning_rate: float = 0.01,
batch_size: int = 32):
self.lr = learning_rate
self.batch_size = batch_size
def optimize_batch(self,
params: np.ndarray,
data_batch: np.ndarray) -> np.ndarray:
"""Perform stochastic optimization step."""
# Compute batch gradient
grad = self.compute_batch_gradient(params, data_batch)
# Apply variance reduction
grad = self.reduce_variance(grad)
# Update parameters
params = self.update_parameters(params, grad)
return params
Dynamic Programming
Value Iteration for POMDPs
class ValueIterator:
"""
Value iteration for POMDPs.
Theory:
- [[dynamic_programming]]
- [[bellman_equation]]
Mathematics:
- [[markov_decision_process]]
- [[value_functions]]
"""
def __init__(self,
discount: float = 0.95,
tolerance: float = 1e-6):
self.gamma = discount
self.tol = tolerance
def iterate_values(self,
belief_states: np.ndarray,
transition_model: np.ndarray,
reward_model: np.ndarray) -> np.ndarray:
"""Perform value iteration."""
# Initialize value function
V = np.zeros(len(belief_states))
while True:
# Backup old values
V_old = V.copy()
# Update values
for i, b in enumerate(belief_states):
V[i] = self._compute_optimal_value(
b, transition_model, reward_model, V_old
)
# Check convergence
if np.max(np.abs(V - V_old)) < self.tol:
break
return V
Documentation Links
- ../../docs/research/research_documentation_index
- ../../docs/guides/implementation_guides_index
- ../../docs/api/api_documentation_index
- ../../docs/examples/usage_examples_index