зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 05:06:04 +02:00 
			
		
		
		
	
		
			
				
	
	
	
		
			6.2 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			6.2 KiB
		
	
	
	
	
	
	
	
| title | type | status | created | tags | semantic_relations | |||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Path Integral Connections | knowledge_base | stable | 2024-03-20 | 
 | 
 | 
Path Integral Connections
This article maps the deep connections between path integral formulations and other mathematical frameworks in cognitive science, particularly focusing on information theory, variational methods, and active inference.
Information-Theoretic Connections
Entropy and Path Integrals
- 
Path Entropy Mapping S[P] = -∫ 𝒟x P[x(t)]log P[x(t)] ↔ H(X) = -∑ P(x)log P(x)where: - Left side: Path entropy (path_integral_information)
- Right side: Shannon entropy (information_theory)
- Connection: Functional generalization
 
- 
Dynamic Information I[x(t)] = ∫ dt L(x(t), ẋ(t)) ↔ I(X;Y) = ∑ P(x,y)log(P(x,y)/P(x)P(y))where: - Left side: Path information (path_integral_theory)
- Right side: Mutual information (information_theory)
- Connection: Temporal integration
 
Free Energy Principles
- 
Variational Mapping F[q] = ∫ 𝒟x q[x(t)]log(q[x(t)]/p[x(t)]) ↔ F = KL[q(s)||p(s|o)]where: - Left side: Path free energy (path_integral_information)
- Right side: Variational free energy (free_energy_principle)
- Connection: Path space generalization
 
- 
Expected Free Energy G[π] = ∫ dt E_{q(o,s|π)}[log q(s|π) - log p(o,s)] ↔ G = KL[q(o|π)||p(o)] + H(o|s,π)where: - Left side: Path expected free energy (path_integral_information)
- Right side: Expected free energy (active_inference)
- Connection: Temporal integration
 
Geometric Connections
Information Geometry
- 
Metric Structure g_μν[x(t)] = E[∂_μlog p(x(t))∂_νlog p(x(t))] ↔ g_ij = E[∂_ilog p(x)∂_jlog p(x)]where: - Left side: Path Fisher metric (path_integral_information)
- Right side: Fisher information metric (information_geometry)
- Connection: Functional extension
 
- 
Natural Gradients ẋ = -g^{μν}∂_νF[x(t)] ↔ θ̇ = -g^{ij}∂_jF(θ)where: - Left side: Path gradient flow (path_integral_information)
- Right side: Natural gradient (information_geometry)
- Connection: Infinite-dimensional generalization
 
Variational Methods
Action Principles
- 
Information Action A[x(t)] = ∫ dt [D(ẋ - f(x))² + Q(x)] ↔ S[φ] = ∫ dt L(φ, ∂φ)where: - Left side: Information action (path_integral_information)
- Right side: Classical action (variational_calculus)
- Connection: Information-theoretic interpretation
 
- 
Optimization Structure δA[x(t)] = 0 ↔ δF[q] = 0where: - Left side: Action principle (path_integral_theory)
- Right side: Variational principle (variational_methods)
- Connection: Extremal principles
 
Active Inference Implementation
Belief Propagation
- 
Path Space Beliefs q[x(t)] = Z⁻¹exp(-A[x(t)]/σ²) ↔ q(s) = σ(-∂F/∂s)where: - Left side: Path distribution (path_integral_information)
- Right side: Belief update (active_inference)
- Connection: Dynamical generalization
 
- 
Policy Selection π* = argmin_π ∫ dt G[π(t)] ↔ π* = argmin_π G(π)where: - Left side: Path policy optimization (path_integral_information)
- Right side: Policy selection (active_inference)
- Connection: Temporal integration
 
Computational Frameworks
Sampling Methods
- 
Path Space MCMC def path_mcmc( action: Callable, initial_path: np.ndarray, num_samples: int ) -> List[np.ndarray]: """Implements path space MCMC sampling.""" paths = [] current = initial_path for _ in range(num_samples): proposed = propose_path(current) if accept_path(current, proposed, action): current = proposed paths.append(current.copy()) return pathsConnection to: 
- 
Variational Optimization def optimize_path_density( variational_family: Callable, target_density: Callable, num_iterations: int ) -> Callable: """Optimizes variational path density.""" current_density = initialize_density(variational_family) for _ in range(num_iterations): gradient = compute_path_gradient( current_density, target_density) current_density = update_density( current_density, gradient) return current_densityConnection to: 
Future Synthesis
Theoretical Integration
- 
Quantum Extensions - Path integral quantum mechanics
- Quantum information theory
- Quantum active inference
- Quantum control theory
 
- 
Statistical Physics - Non-equilibrium dynamics
- Fluctuation theorems
- Maximum entropy principles
- Phase transitions
 
Practical Applications
- 
Neural Systems - Neural field theories
- Population dynamics
- Learning algorithms
- Control architectures
 
- 
Cognitive Models - Perception models
- Learning theories
- Decision processes
- Behavioral control
 
Related Concepts
References
- feynman_1948 - "Space-Time Approach to Non-Relativistic Quantum Mechanics"
- friston_2019 - "A Free Energy Principle for a Particular Physics"
- amari_2000 - "Information Geometry and Its Applications"
- pearl_2009 - "Causality: Models, Reasoning, and Inference"
