cognitive/knowledge_base/mathematics/path_integral_connections.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

6.2 KiB
Исходник Постоянная ссылка Ответственный История

title type status created tags semantic_relations
Path Integral Connections knowledge_base stable 2024-03-20
mathematics
path_integrals
connections
synthesis
type links
implements
path_integral_information
type links
extends
mathematical_foundations
type links
related
information_theory
variational_methods
active_inference
free_energy_principle

Path Integral Connections

This article maps the deep connections between path integral formulations and other mathematical frameworks in cognitive science, particularly focusing on information theory, variational methods, and active inference.

Information-Theoretic Connections

Entropy and Path Integrals

  1. Path Entropy Mapping

    S[P] = -∫ 𝒟x P[x(t)]log P[x(t)] ↔ H(X) = -∑ P(x)log P(x)
    

    where:

  2. Dynamic Information

    I[x(t)] = ∫ dt L(x(t), ẋ(t)) ↔ I(X;Y) = ∑ P(x,y)log(P(x,y)/P(x)P(y))
    

    where:

Free Energy Principles

  1. Variational Mapping

    F[q] = ∫ 𝒟x q[x(t)]log(q[x(t)]/p[x(t)]) ↔ F = KL[q(s)||p(s|o)]
    

    where:

  2. Expected Free Energy

    G[π] = ∫ dt E_{q(o,s|π)}[log q(s|π) - log p(o,s)] ↔ G = KL[q(o|π)||p(o)] + H(o|s,π)
    

    where:

Geometric Connections

Information Geometry

  1. Metric Structure

    g_μν[x(t)] = E[∂_μlog p(x(t))∂_νlog p(x(t))] ↔ g_ij = E[∂_ilog p(x)∂_jlog p(x)]
    

    where:

  2. Natural Gradients

    ẋ = -g^{μν}∂_νF[x(t)] ↔ θ̇ = -g^{ij}∂_jF(θ)
    

    where:

Variational Methods

Action Principles

  1. Information Action

    A[x(t)] = ∫ dt [D(ẋ - f(x))² + Q(x)] ↔ S[φ] = ∫ dt L(φ, ∂φ)
    

    where:

  2. Optimization Structure

    δA[x(t)] = 0 ↔ δF[q] = 0
    

    where:

Active Inference Implementation

Belief Propagation

  1. Path Space Beliefs

    q[x(t)] = Z⁻¹exp(-A[x(t)]/σ²) ↔ q(s) = σ(-∂F/∂s)
    

    where:

  2. Policy Selection

    π* = argmin_π ∫ dt G[π(t)] ↔ π* = argmin_π G(π)
    

    where:

Computational Frameworks

Sampling Methods

  1. Path Space MCMC

    def path_mcmc(
        action: Callable,
        initial_path: np.ndarray,
        num_samples: int
    ) -> List[np.ndarray]:
        """Implements path space MCMC sampling."""
        paths = []
        current = initial_path
    
        for _ in range(num_samples):
            proposed = propose_path(current)
            if accept_path(current, proposed, action):
                current = proposed
            paths.append(current.copy())
    
        return paths
    

    Connection to:

  2. Variational Optimization

    def optimize_path_density(
        variational_family: Callable,
        target_density: Callable,
        num_iterations: int
    ) -> Callable:
        """Optimizes variational path density."""
        current_density = initialize_density(variational_family)
    
        for _ in range(num_iterations):
            gradient = compute_path_gradient(
                current_density, target_density)
            current_density = update_density(
                current_density, gradient)
    
        return current_density
    

    Connection to:

Future Synthesis

Theoretical Integration

  1. Quantum Extensions

    • Path integral quantum mechanics
    • Quantum information theory
    • Quantum active inference
    • Quantum control theory
  2. Statistical Physics

    • Non-equilibrium dynamics
    • Fluctuation theorems
    • Maximum entropy principles
    • Phase transitions

Practical Applications

  1. Neural Systems

    • Neural field theories
    • Population dynamics
    • Learning algorithms
    • Control architectures
  2. Cognitive Models

    • Perception models
    • Learning theories
    • Decision processes
    • Behavioral control

References

  • feynman_1948 - "Space-Time Approach to Non-Relativistic Quantum Mechanics"
  • friston_2019 - "A Free Energy Principle for a Particular Physics"
  • amari_2000 - "Information Geometry and Its Applications"
  • pearl_2009 - "Causality: Models, Reasoning, and Inference"