cognitive/knowledge_base/mathematics/path_integral_free_energy.md
Daniel Ari Friedman 4fcb46908d Various Updates
2025-02-12 19:26:24 -08:00

28 KiB
Исходник Постоянная ссылка Ответственный История

type id created modified tags aliases complexity processing_priority semantic_relations
mathematical_concept path_integral_free_energy_001 2024-02-05 2024-03-15
free-energy
path-integrals
active-inference
statistical-mechanics
quantum-mechanics
variational-methods
dynamical-systems
control-theory
path-integral-FEP
FEP-path-formulation
action-principle
hamiltonian-FEP
advanced 1
type links
implements
active_inference
free_energy_principle
optimal_control
type links
mathematical_basis
quantum_mechanics
statistical_mechanics
information_geometry
dynamical_systems
differential_geometry
variational_calculus
type links
relates
variational_free_energy
expected_free_energy
stochastic_thermodynamics
path_integral_control
hamiltonian_mechanics
lagrangian_mechanics

Path Integral Formulation of the Free Energy Principle

Overview

The path integral formulation provides a powerful mathematical framework for understanding the free_energy_principle through the lens of trajectories in state space. This approach unifies concepts from statistical_mechanics, quantum_mechanics, and control_theory to describe how systems minimize free energy over time. The formulation directly connects to continuous_time_active_inference and provides a natural extension of the free_energy functional to trajectory spaces.

Key Connections

Mathematical Framework

Core Definition

The path integral formulation expresses the free_energy_principle through trajectories in state space, extending the free_energy functional to paths:

\mathcal{F}[\pi] = \int_{\tau} \mathcal{L}(s(\tau), \dot{s}(\tau), a(\tau)) d\tau + \ln Z

This directly connects to the continuous-time free energy in continuous_time_active_inference:

F[q] = ∫ dt [⟨ln q(s(t)) - ln p(o(t),s(t))⟩_q]

where:

Lagrangian Decomposition

The Lagrangian decomposes into kinetic and potential terms (hamiltonian_mechanics):

\mathcal{L} = \underbrace{\frac{1}{2}(\dot{s} - f(s,a))^T \Gamma (\dot{s} - f(s,a))}_{\text{Kinetic Term}} + \underbrace{V(s)}_{\text{Potential Term}}

where:

Action Principle

The principle of least action (variational_principles) leads to:

\delta \mathcal{F}[\pi] = 0 \implies \frac{d}{d\tau}\frac{\partial \mathcal{L}}{\partial \dot{s}} - \frac{\partial \mathcal{L}}{\partial s} = 0

Hamiltonian Formulation

The equivalent Hamiltonian form (hamiltonian_mechanics):

\mathcal{H}(s,p,a) = p^T f(s,a) + \frac{1}{2}p^T \Gamma^{-1} p + V(s)

where:

Variational Structure

The variational structure (variational_calculus) emerges from:

\delta \mathcal{F}[\pi] = \int_{\tau} \left(\frac{\partial \mathcal{L}}{\partial s} - \frac{d}{d\tau}\frac{\partial \mathcal{L}}{\partial \dot{s}}\right)\delta s(\tau) d\tau + \left.\frac{\partial \mathcal{L}}{\partial \dot{s}}\delta s(\tau)\right|_{t_0}^{t_1}

where:

  • \delta s(\tau) is the variation in path
  • Boundary terms vanish for fixed endpoints
  • euler_lagrange_equations emerge naturally

Stochastic Extension

For stochastic systems (stochastic_processes):

d\mathcal{F} = \frac{\partial \mathcal{F}}{\partial s}ds + \frac{1}{2}\text{tr}\left(\frac{\partial^2 \mathcal{F}}{\partial s^2}D\right)dt

where:

Theoretical Foundations

1. Statistical Physics Connection

  • partition_function representation:
    Z = \int \mathcal{D}[s(\tau)] \exp(-\beta \mathcal{F}[s(\tau)])
    
  • free_energy_landscapes:
    F(s) = -\frac{1}{\beta} \ln \int \mathcal{D}[s'(\tau)] \exp(-\beta \mathcal{F}[s'(\tau)]) \delta(s'(0) - s)
    

2. Information Geometric Structure

3. Quantum Mechanical Analogy

4. Dynamical Systems Theory

  • lyapunov_theory:
    \frac{d}{dt}\mathcal{F}(s) = -\frac{\partial \mathcal{F}}{\partial s}^T \Gamma \frac{\partial \mathcal{F}}{\partial s} \leq 0
    
  • stability_analysis:
    \delta^2\mathcal{F} = \int_{\tau} \delta s^T \frac{\delta^2 \mathcal{L}}{\delta s^2} \delta s d\tau > 0
    

5. Control Theoretic Perspective

Advanced Implementation

1. Path Integral Computation

class PathIntegralComputer:
    """Implementation connecting to ContinuousTimeAgent framework"""
    def __init__(self):
        self.components = {
            'dynamics': DynamicsModel(
                type='stochastic',
                integration='symplectic'
            ),
            'action': ActionComputer(
                method='variational',
                discretization='adaptive'
            ),
            'sampler': PathSampler(
                method='importance',
                particles='adaptive'
            ),
            'continuous_time': ContinuousTimeInterface(
                agent_type='active_inference',
                integration='rk4'
            )
        }
    
    def compute_path_integral(
        self,
        initial_state: np.ndarray,
        policy: Policy,
        horizon: int
    ) -> Tuple[float, dict]:
        """Compute path integral free energy with continuous time integration"""
        # Generate paths using continuous time dynamics
        paths = self.components['continuous_time'].generate_trajectories(
            initial_state, policy, horizon)
            
        # Compute action using variational principle
        action = self.components['action'].compute(
            paths, self.components['dynamics'])
            
        # Evaluate free energy along paths
        free_energy = self.compute_path_free_energy(paths, action)
        
        metrics = {
            'paths': paths,
            'action': action,
            'continuous_time_metrics': self.components['continuous_time'].get_metrics()
        }
        
        return free_energy, metrics
        
    def compute_path_free_energy(self, paths, action):
        """Compute free energy along paths using continuous time formulation"""
        # Initialize continuous time components
        continuous_fe = self.components['continuous_time'].initialize_free_energy()
        
        # Compute free energy along trajectory
        for t, (state, act) in enumerate(zip(paths, action)):
            continuous_fe.accumulate(
                state, act, self.components['dynamics'])
            
        return continuous_fe.finalize()

2. Continuous Time Integration

class ContinuousTimeInterface:
    """Bridge between path integrals and continuous time active inference"""
    def __init__(self, agent_type='active_inference', integration='rk4'):
        self.agent = self.initialize_agent(agent_type)
        self.integrator = self.initialize_integrator(integration)
        
    def generate_trajectories(self, initial_state, policy, horizon):
        """Generate trajectories using continuous time dynamics"""
        trajectories = []
        current_state = initial_state
        
        for t in range(horizon):
            # Update state using continuous time dynamics
            next_state = self.integrator.step(
                current_state,
                lambda s: self.agent.compute_state_derivatives(s),
                self.agent.dt
            )
            
            # Apply policy in continuous time
            action = policy.evaluate(current_state, t)
            next_state = self.agent.apply_action(next_state, action)
            
            trajectories.append(next_state)
            current_state = next_state
            
        return trajectories
        
    def initialize_free_energy(self):
        """Initialize continuous time free energy computation"""
        return ContinuousTimeFreeEnergy(
            self.agent.dim_states,
            self.agent.precision_x,
            self.agent.precision_y
        )

3. Free Energy Bridge

class ContinuousTimeFreeEnergy:
    """Bridge between path integral and continuous time free energy"""
    def __init__(self, dim_states, precision_x, precision_y):
        self.dim_states = dim_states
        self.precision_x = precision_x
        self.precision_y = precision_y
        self.accumulated_fe = 0.0
        
    def accumulate(self, state, action, dynamics):
        """Accumulate free energy along trajectory"""
        # Compute prediction errors
        dyn_error = self.compute_dynamics_error(state, action, dynamics)
        obs_error = self.compute_observation_error(state)
        
        # Update accumulated free energy
        self.accumulated_fe += 0.5 * (
            dyn_error.T @ self.precision_x @ dyn_error +
            obs_error.T @ self.precision_y @ obs_error
        )
        
    def finalize(self):
        """Compute final path integral free energy"""
        return self.accumulated_fe

4. Geometric Integration

class GeometricIntegrator:
    def __init__(self):
        self.components = {
            'metric': RiemannianMetric(
                type='fisher',
                regularization=True
            ),
            'connection': LeviCivitaConnection(
                type='christoffel',
                computation='automatic'
            ),
            'geodesic': GeodesicFlow(
                method='variational',
                steps='adaptive'
            )
        }
    
    def integrate_geodesic(
        self,
        initial_point: np.ndarray,
        initial_velocity: np.ndarray,
        time: float
    ) -> Tuple[np.ndarray, dict]:
        """Integrate along geodesic flow"""
        # Compute metric
        metric = self.components['metric'].compute(initial_point)
        
        # Compute connection
        connection = self.components['connection'].compute(
            initial_point, metric)
            
        # Integrate flow
        trajectory = self.components['geodesic'].evolve(
            initial_point,
            initial_velocity,
            metric,
            connection,
            time
        )
        
        return trajectory

5. Stochastic Integration

class StochasticIntegrator:
    def __init__(self):
        self.components = {
            'drift': DriftField(
                type='gradient',
                potential='adaptive'
            ),
            'diffusion': DiffusionField(
                type='multiplicative',
                temperature='adaptive'
            ),
            'solver': StochasticSolver(
                method='milstein',
                timestep='adaptive'
            )
        }
    
    def integrate_sde(
        self,
        initial_state: np.ndarray,
        time: float,
        noise: np.ndarray
    ) -> Tuple[np.ndarray, dict]:
        """Integrate stochastic differential equation"""
        # Compute drift
        drift = self.components['drift'].compute(initial_state)
        
        # Compute diffusion
        diffusion = self.components['diffusion'].compute(
            initial_state)
            
        # Solve SDE
        trajectory = self.components['solver'].solve(
            initial_state,
            drift,
            diffusion,
            time,
            noise
        )
        
        return trajectory

6. Symplectic Integration

class SymplecticIntegrator:
    """Symplectic integration for Hamiltonian systems."""
    def __init__(self):
        self.components = {
            'hamiltonian': HamiltonianSystem(
                type='separable',
                coordinates='canonical'
            ),
            'integrator': SymplecticMethod(
                order=4,
                scheme='forest-ruth'
            )
        }
    
    def integrate_hamilton(
        self,
        state: np.ndarray,
        momentum: np.ndarray,
        time: float
    ) -> Tuple[np.ndarray, np.ndarray]:
        """Integrate Hamilton's equations."""
        return self.components['integrator'].evolve(
            state, momentum, time, self.components['hamiltonian']
        )

7. Variational Integration

class VariationalIntegrator:
    """Variational integrator for discrete mechanics."""
    def __init__(self):
        self.components = {
            'discrete_lagrangian': DiscreteLagrangian(
                order=2,
                method='galerkin'
            ),
            'variational_solver': VariationalSolver(
                scheme='discrete_euler_lagrange',
                constraints='holonomic'
            )
        }
    
    def integrate_action(
        self,
        initial_state: np.ndarray,
        final_state: np.ndarray,
        num_steps: int
    ) -> np.ndarray:
        """Integrate using discrete variational principle."""
        # Discretize trajectory
        discrete_path = self.components['discrete_lagrangian'].discretize(
            initial_state, final_state, num_steps)
        
        # Solve discrete Euler-Lagrange equations
        solution = self.components['variational_solver'].solve(
            discrete_path,
            self.components['discrete_lagrangian']
        )
        
        return solution

8. Neural Implementation

class NeuralPathIntegral:
    """Neural network implementation of path integrals."""
    def __init__(self):
        self.components = {
            'encoder': PathEncoder(
                architecture='transformer',
                attention='multihead'
            ),
            'dynamics': NeuralSDE(
                drift='neural_ode',
                diffusion='neural_sde'
            ),
            'decoder': PathDecoder(
                architecture='autoregressive',
                uncertainty='probabilistic'
            )
        }
    
    def learn_path_distribution(
        self,
        training_paths: np.ndarray,
        num_epochs: int
    ) -> None:
        """Learn path distribution from data."""
        for epoch in range(num_epochs):
            # Encode paths
            latent = self.components['encoder'](training_paths)
            
            # Learn dynamics
            trajectories = self.components['dynamics'](latent)
            
            # Decode paths
            reconstructed = self.components['decoder'](trajectories)
            
            # Update parameters
            self._update_parameters(
                training_paths, reconstructed)

Implementation Bridge

1. Continuous-Time Path Integral

class ContinuousTimePathIntegral:
    """Bridge between continuous time active inference and path integrals"""
    def __init__(self, dim_states, dim_obs, dim_action):
        self.continuous_agent = ContinuousTimeAgent(
            dim_states=dim_states,
            dim_obs=dim_obs,
            dim_action=dim_action
        )
        self.path_computer = PathIntegralComputer()
        
    def compute_optimal_path(self, initial_state, goal_state, horizon):
        """Compute optimal path using both frameworks"""
        # Initialize path distribution
        path_distribution = self.initialize_path_distribution(
            initial_state, goal_state)
            
        # Continuous time evolution
        for t in range(horizon):
            # Update beliefs using continuous time dynamics
            self.continuous_agent.update_beliefs(
                path_distribution.current_observation())
                
            # Compute path integral
            free_energy, paths = self.path_computer.compute_path_integral(
                self.continuous_agent.internal_states,
                self.continuous_agent.action,
                horizon - t
            )
            
            # Update path distribution
            path_distribution.update(paths, free_energy)
            
        return path_distribution.optimal_path()
        
    def initialize_path_distribution(self, initial_state, goal_state):
        """Initialize path distribution connecting states"""
        return PathDistribution(
            initial_state=initial_state,
            goal_state=goal_state,
            dynamics=self.continuous_agent.f,
            observation=self.continuous_agent.g
        )

2. Active Inference Integration

class ActiveInferenceBridge:
    """Integration of active inference with path integrals"""
    def __init__(self):
        self.free_energy = ContinuousTimeFreeEnergy()
        self.path_integral = ContinuousTimePathIntegral()
        self.active_inference = ActiveInferenceProcess()
        
    def infer_optimal_policy(self, observation, goal):
        """Infer optimal policy using both frameworks"""
        # Initialize belief states
        beliefs = self.active_inference.initialize_beliefs(observation)
        
        # Compute path integral free energy
        path_fe, paths = self.path_integral.compute_optimal_path(
            beliefs.mean, goal, horizon=self.active_inference.planning_horizon)
            
        # Update beliefs using path information
        beliefs = self.active_inference.update_beliefs_with_paths(
            beliefs, paths, path_fe)
            
        # Select action using both free energies
        action = self.select_optimal_action(beliefs, paths)
        
        return action, beliefs, paths
        
    def select_optimal_action(self, beliefs, paths):
        """Select action using combined information"""
        # Compute expected free energy
        G = self.active_inference.compute_expected_free_energy(beliefs)
        
        # Compute path integral contribution
        path_contribution = self.path_integral.compute_action_contribution(paths)
        
        # Combine and select optimal action
        combined_objective = self.combine_objectives(G, path_contribution)
        return self.active_inference.select_action(combined_objective)

3. Hierarchical Implementation

class HierarchicalPathIntegral:
    """Hierarchical implementation combining both frameworks"""
    def __init__(self, layer_dims):
        self.layers = []
        for i in range(len(layer_dims) - 1):
            self.layers.append(
                HierarchicalLayer(
                    dim_lower=layer_dims[i],
                    dim_upper=layer_dims[i+1]
                )
            )
            
    def process_hierarchy(self, observation):
        """Process through hierarchy using both frameworks"""
        # Bottom-up pass with continuous time
        current_state = observation
        beliefs = []
        for layer in self.layers:
            # Continuous time belief update
            layer_belief = layer.update_beliefs_continuous(current_state)
            beliefs.append(layer_belief)
            
            # Compute path integral
            paths = layer.compute_paths(layer_belief)
            current_state = layer.summarize_paths(paths)
            
        # Top-down pass with path integrals
        for layer, upper_belief in zip(reversed(self.layers), reversed(beliefs)):
            # Generate predictions using paths
            predicted_paths = layer.generate_predicted_paths(upper_belief)
            
            # Update lower level using both frameworks
            layer.update_lower_level(predicted_paths)
            
        return self.layers[0].get_action()

4. Precision Dynamics

class PrecisionDynamics:
    """Precision updating using both frameworks"""
    def __init__(self):
        self.continuous_precision = PrecisionEstimator(mode='continuous')
        self.path_precision = PathPrecisionComputer()
        
    def update_precision(self, beliefs, paths):
        """Update precision using both sources of information"""
        # Compute continuous time precision
        continuous_prec = self.continuous_precision.estimate(beliefs)
        
        # Compute path-based precision
        path_prec = self.path_precision.compute(paths)
        
        # Combine precision estimates
        return self.combine_precision(continuous_prec, path_prec)
        
    def combine_precision(self, continuous_prec, path_prec):
        """Combine precision estimates optimally"""
        # Compute optimal combination weights
        weights = self.compute_optimal_weights(
            continuous_prec, path_prec)
            
        # Return weighted combination
        return weights[0] * continuous_prec + weights[1] * path_prec

Advanced Concepts

1. Quantum Extensions

2. Statistical Physics

3. Information Geometry

  • fisher_rao_metric
    • Natural gradient methods
    • Information distance measures
    • Statistical manifold structure
    • Geodesic flows

4. Control Theory

  • optimal_control
    • Linear-Quadratic-Gaussian control
    • Model predictive control
    • Stochastic optimal control
    • Path integral control

5. Geometric Mechanics

6. Field Theory Extensions

  • field_theory
    • Continuous systems
    • Gauge theories
    • Symmetry principles
    • Conservation laws

Computational Methods

1. Numerical Integration

  • symplectic_integration
    • Structure-preserving methods
    • Energy conservation
    • Geometric integrators
    • Adaptive timesteps

2. Path Sampling

  • monte_carlo_methods
    • Importance sampling
    • Sequential Monte Carlo
    • Hamiltonian Monte Carlo
    • Parallel tempering

3. Optimization

  • variational_optimization
    • Natural gradient descent
    • Stochastic optimization
    • Trust region methods
    • Adaptive learning rates

4. Machine Learning Integration

  • deep_learning
    • Neural SDEs
    • Normalizing flows
    • Graph neural networks
    • Attention mechanisms

5. Probabilistic Methods

Applications

1. Quantum Systems

  • quantum_control
    • Quantum state preparation
    • Error correction
    • Decoherence control
    • Quantum trajectories

2. Complex Systems

  • self_organization
    • Pattern formation
    • Collective behavior
    • Emergent properties
    • Critical phenomena

3. Biological Systems

4. Artificial Systems

  • robotics_control
    • Motion planning
    • Sensorimotor control
    • Learning from demonstration
    • Adaptive behavior

5. Cognitive Systems

6. Social Systems

Research Directions

1. Theoretical Extensions

2. Computational Methods

  • tensor_networks
    • Quantum simulation
    • Renormalization methods
    • Entanglement structure
    • Numerical efficiency

3. Applications

4. Biological Applications

  • systems_biology
    • Metabolic networks
    • Gene regulation
    • Cell signaling
    • Development

5. Artificial Life

  • artificial_life
    • Self-replication
    • Evolutionary dynamics
    • Morphogenesis
    • Adaptive behavior

Implementation Considerations

1. Numerical Stability

  • numerical_methods
    • Error analysis
    • Stability criteria
    • Convergence rates
    • Adaptive methods

2. Computational Efficiency

  • parallel_computing
    • GPU acceleration
    • Distributed computing
    • Algorithm optimization
    • Memory management

3. Software Design

4. Testing Framework

5. Deployment Strategies

Mathematical Appendices

A. Differential Geometry

  • differential_forms
    • Exterior calculus
    • Integration theory
    • Stokes' theorem
    • de Rham cohomology

B. Functional Analysis

  • function_spaces
    • Sobolev spaces
    • Banach spaces
    • Operator theory
    • Spectral theory

C. Probability Theory

  • measure_theory
    • Probability measures
    • Stochastic processes
    • Martingale theory
    • Large deviations

Code Examples

A. Basic Usage

# Example of basic path integral computation
def basic_path_integral_example():
    # Initialize computer
    computer = PathIntegralComputer()
    
    # Define initial state and policy
    initial_state = np.zeros(3)
    policy = SimplePolicy(action_dim=2)
    
    # Compute path integral
    free_energy, metrics = computer.compute_path_integral(
        initial_state, policy, horizon=10)
    
    return free_energy, metrics

B. Advanced Usage

# Example of advanced path integral computation
def advanced_path_integral_example():
    # Initialize integrators
    geometric = GeometricIntegrator()
    stochastic = StochasticIntegrator()
    symplectic = SymplecticIntegrator()
    
    # Define problem
    state = np.random.randn(3)
    momentum = np.random.randn(3)
    time = 1.0
    
    # Compute different trajectories
    geometric_path = geometric.integrate_geodesic(
        state, momentum, time)
    stochastic_path = stochastic.integrate_sde(
        state, time, noise=0.1)
    hamiltonian_path = symplectic.integrate_hamilton(
        state, momentum, time)
    
    return {
        'geometric': geometric_path,
        'stochastic': stochastic_path,
        'hamiltonian': hamiltonian_path
    }

References

  • feynman_1965 - "The Feynman Lectures on Physics, Vol. III"
  • kleinert_2009 - "Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics"
  • friston_2019 - "A Free Energy Principle for a Particular Physics"
  • seifert_2012 - "Stochastic Thermodynamics, Fluctuation Theorems"
  • amari_2000 - "Information Geometry and Its Applications"
  • marsden_2001 - "Discrete Mechanics and Variational Integrators"

See Also