28 KiB
| type | id | created | modified | tags | aliases | complexity | processing_priority | semantic_relations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| mathematical_concept | path_integral_free_energy_001 | 2024-02-05 | 2024-03-15 |
|
|
advanced | 1 |
|
Path Integral Formulation of the Free Energy Principle
Overview
The path integral formulation provides a powerful mathematical framework for understanding the free_energy_principle through the lens of trajectories in state space. This approach unifies concepts from statistical_mechanics, quantum_mechanics, and control_theory to describe how systems minimize free energy over time. The formulation directly connects to continuous_time_active_inference and provides a natural extension of the free_energy functional to trajectory spaces.
Key Connections
- free_energy_principle: Path integrals provide the mathematical foundation for continuous-time free energy minimization
- continuous_time_active_inference: Implements path integral optimization for action selection
- free_energy: Extends variational free energy to trajectory spaces
Mathematical Framework
Core Definition
The path integral formulation expresses the free_energy_principle through trajectories in state space, extending the free_energy functional to paths:
\mathcal{F}[\pi] = \int_{\tau} \mathcal{L}(s(\tau), \dot{s}(\tau), a(\tau)) d\tau + \ln Z
This directly connects to the continuous-time free energy in continuous_time_active_inference:
F[q] = ∫ dt [⟨ln q(s(t)) - ln p(o(t),s(t))⟩_q]
where:
\mathcal{L}is the Lagrangian of the system (lagrangian_mechanics)s(\tau)represents the state trajectory (state_space_theory)a(\tau)represents the action trajectory (action_selection)Zis the partition function (statistical_mechanics)
Lagrangian Decomposition
The Lagrangian decomposes into kinetic and potential terms (hamiltonian_mechanics):
\mathcal{L} = \underbrace{\frac{1}{2}(\dot{s} - f(s,a))^T \Gamma (\dot{s} - f(s,a))}_{\text{Kinetic Term}} + \underbrace{V(s)}_{\text{Potential Term}}
where:
f(s,a)defines system dynamics (dynamical_systems)\Gammais the precision matrix (information_geometry)V(s)is the potential function (potential_theory)
Action Principle
The principle of least action (variational_principles) leads to:
\delta \mathcal{F}[\pi] = 0 \implies \frac{d}{d\tau}\frac{\partial \mathcal{L}}{\partial \dot{s}} - \frac{\partial \mathcal{L}}{\partial s} = 0
Hamiltonian Formulation
The equivalent Hamiltonian form (hamiltonian_mechanics):
\mathcal{H}(s,p,a) = p^T f(s,a) + \frac{1}{2}p^T \Gamma^{-1} p + V(s)
where:
pis the conjugate momentum (canonical_coordinates)\mathcal{H}is the Hamiltonian (energy_functions)
Variational Structure
The variational structure (variational_calculus) emerges from:
\delta \mathcal{F}[\pi] = \int_{\tau} \left(\frac{\partial \mathcal{L}}{\partial s} - \frac{d}{d\tau}\frac{\partial \mathcal{L}}{\partial \dot{s}}\right)\delta s(\tau) d\tau + \left.\frac{\partial \mathcal{L}}{\partial \dot{s}}\delta s(\tau)\right|_{t_0}^{t_1}
where:
\delta s(\tau)is the variation in path- Boundary terms vanish for fixed endpoints
- euler_lagrange_equations emerge naturally
Stochastic Extension
For stochastic systems (stochastic_processes):
d\mathcal{F} = \frac{\partial \mathcal{F}}{\partial s}ds + \frac{1}{2}\text{tr}\left(\frac{\partial^2 \mathcal{F}}{\partial s^2}D\right)dt
where:
Dis the diffusion tensor (diffusion_processes)- Second term is the Itô correction (ito_calculus)
Theoretical Foundations
1. Statistical Physics Connection
- partition_function representation:
Z = \int \mathcal{D}[s(\tau)] \exp(-\beta \mathcal{F}[s(\tau)]) - free_energy_landscapes:
F(s) = -\frac{1}{\beta} \ln \int \mathcal{D}[s'(\tau)] \exp(-\beta \mathcal{F}[s'(\tau)]) \delta(s'(0) - s)
2. Information Geometric Structure
- fisher_information_metric:
g_{μν}(s) = \mathbb{E}_p[\partial_μ \ln p(o|s) \partial_ν \ln p(o|s)] - natural_gradient flow:
\dot{s} = -g^{μν}(s) \frac{\partial \mathcal{F}}{\partial s_ν}
3. Quantum Mechanical Analogy
- feynman_path_integral:
K(s_f,s_i) = \int \mathcal{D}[s(\tau)] \exp(\frac{i}{\hbar}S[s(\tau)]) - quantum_propagator:
\psi(s,t) = \int K(s,s';t) \psi(s',0) ds'
4. Dynamical Systems Theory
- lyapunov_theory:
\frac{d}{dt}\mathcal{F}(s) = -\frac{\partial \mathcal{F}}{\partial s}^T \Gamma \frac{\partial \mathcal{F}}{\partial s} \leq 0 - stability_analysis:
\delta^2\mathcal{F} = \int_{\tau} \delta s^T \frac{\delta^2 \mathcal{L}}{\delta s^2} \delta s d\tau > 0
5. Control Theoretic Perspective
- optimal_control_theory:
J[\pi] = \int_{\tau} [L(s,a) + \lambda^T(f(s,a) - \dot{s})]d\tau - pontryagin_principle:
H(s,p,a) = L(s,a) + p^T f(s,a)
Advanced Implementation
1. Path Integral Computation
class PathIntegralComputer:
"""Implementation connecting to ContinuousTimeAgent framework"""
def __init__(self):
self.components = {
'dynamics': DynamicsModel(
type='stochastic',
integration='symplectic'
),
'action': ActionComputer(
method='variational',
discretization='adaptive'
),
'sampler': PathSampler(
method='importance',
particles='adaptive'
),
'continuous_time': ContinuousTimeInterface(
agent_type='active_inference',
integration='rk4'
)
}
def compute_path_integral(
self,
initial_state: np.ndarray,
policy: Policy,
horizon: int
) -> Tuple[float, dict]:
"""Compute path integral free energy with continuous time integration"""
# Generate paths using continuous time dynamics
paths = self.components['continuous_time'].generate_trajectories(
initial_state, policy, horizon)
# Compute action using variational principle
action = self.components['action'].compute(
paths, self.components['dynamics'])
# Evaluate free energy along paths
free_energy = self.compute_path_free_energy(paths, action)
metrics = {
'paths': paths,
'action': action,
'continuous_time_metrics': self.components['continuous_time'].get_metrics()
}
return free_energy, metrics
def compute_path_free_energy(self, paths, action):
"""Compute free energy along paths using continuous time formulation"""
# Initialize continuous time components
continuous_fe = self.components['continuous_time'].initialize_free_energy()
# Compute free energy along trajectory
for t, (state, act) in enumerate(zip(paths, action)):
continuous_fe.accumulate(
state, act, self.components['dynamics'])
return continuous_fe.finalize()
2. Continuous Time Integration
class ContinuousTimeInterface:
"""Bridge between path integrals and continuous time active inference"""
def __init__(self, agent_type='active_inference', integration='rk4'):
self.agent = self.initialize_agent(agent_type)
self.integrator = self.initialize_integrator(integration)
def generate_trajectories(self, initial_state, policy, horizon):
"""Generate trajectories using continuous time dynamics"""
trajectories = []
current_state = initial_state
for t in range(horizon):
# Update state using continuous time dynamics
next_state = self.integrator.step(
current_state,
lambda s: self.agent.compute_state_derivatives(s),
self.agent.dt
)
# Apply policy in continuous time
action = policy.evaluate(current_state, t)
next_state = self.agent.apply_action(next_state, action)
trajectories.append(next_state)
current_state = next_state
return trajectories
def initialize_free_energy(self):
"""Initialize continuous time free energy computation"""
return ContinuousTimeFreeEnergy(
self.agent.dim_states,
self.agent.precision_x,
self.agent.precision_y
)
3. Free Energy Bridge
class ContinuousTimeFreeEnergy:
"""Bridge between path integral and continuous time free energy"""
def __init__(self, dim_states, precision_x, precision_y):
self.dim_states = dim_states
self.precision_x = precision_x
self.precision_y = precision_y
self.accumulated_fe = 0.0
def accumulate(self, state, action, dynamics):
"""Accumulate free energy along trajectory"""
# Compute prediction errors
dyn_error = self.compute_dynamics_error(state, action, dynamics)
obs_error = self.compute_observation_error(state)
# Update accumulated free energy
self.accumulated_fe += 0.5 * (
dyn_error.T @ self.precision_x @ dyn_error +
obs_error.T @ self.precision_y @ obs_error
)
def finalize(self):
"""Compute final path integral free energy"""
return self.accumulated_fe
4. Geometric Integration
class GeometricIntegrator:
def __init__(self):
self.components = {
'metric': RiemannianMetric(
type='fisher',
regularization=True
),
'connection': LeviCivitaConnection(
type='christoffel',
computation='automatic'
),
'geodesic': GeodesicFlow(
method='variational',
steps='adaptive'
)
}
def integrate_geodesic(
self,
initial_point: np.ndarray,
initial_velocity: np.ndarray,
time: float
) -> Tuple[np.ndarray, dict]:
"""Integrate along geodesic flow"""
# Compute metric
metric = self.components['metric'].compute(initial_point)
# Compute connection
connection = self.components['connection'].compute(
initial_point, metric)
# Integrate flow
trajectory = self.components['geodesic'].evolve(
initial_point,
initial_velocity,
metric,
connection,
time
)
return trajectory
5. Stochastic Integration
class StochasticIntegrator:
def __init__(self):
self.components = {
'drift': DriftField(
type='gradient',
potential='adaptive'
),
'diffusion': DiffusionField(
type='multiplicative',
temperature='adaptive'
),
'solver': StochasticSolver(
method='milstein',
timestep='adaptive'
)
}
def integrate_sde(
self,
initial_state: np.ndarray,
time: float,
noise: np.ndarray
) -> Tuple[np.ndarray, dict]:
"""Integrate stochastic differential equation"""
# Compute drift
drift = self.components['drift'].compute(initial_state)
# Compute diffusion
diffusion = self.components['diffusion'].compute(
initial_state)
# Solve SDE
trajectory = self.components['solver'].solve(
initial_state,
drift,
diffusion,
time,
noise
)
return trajectory
6. Symplectic Integration
class SymplecticIntegrator:
"""Symplectic integration for Hamiltonian systems."""
def __init__(self):
self.components = {
'hamiltonian': HamiltonianSystem(
type='separable',
coordinates='canonical'
),
'integrator': SymplecticMethod(
order=4,
scheme='forest-ruth'
)
}
def integrate_hamilton(
self,
state: np.ndarray,
momentum: np.ndarray,
time: float
) -> Tuple[np.ndarray, np.ndarray]:
"""Integrate Hamilton's equations."""
return self.components['integrator'].evolve(
state, momentum, time, self.components['hamiltonian']
)
7. Variational Integration
class VariationalIntegrator:
"""Variational integrator for discrete mechanics."""
def __init__(self):
self.components = {
'discrete_lagrangian': DiscreteLagrangian(
order=2,
method='galerkin'
),
'variational_solver': VariationalSolver(
scheme='discrete_euler_lagrange',
constraints='holonomic'
)
}
def integrate_action(
self,
initial_state: np.ndarray,
final_state: np.ndarray,
num_steps: int
) -> np.ndarray:
"""Integrate using discrete variational principle."""
# Discretize trajectory
discrete_path = self.components['discrete_lagrangian'].discretize(
initial_state, final_state, num_steps)
# Solve discrete Euler-Lagrange equations
solution = self.components['variational_solver'].solve(
discrete_path,
self.components['discrete_lagrangian']
)
return solution
8. Neural Implementation
class NeuralPathIntegral:
"""Neural network implementation of path integrals."""
def __init__(self):
self.components = {
'encoder': PathEncoder(
architecture='transformer',
attention='multihead'
),
'dynamics': NeuralSDE(
drift='neural_ode',
diffusion='neural_sde'
),
'decoder': PathDecoder(
architecture='autoregressive',
uncertainty='probabilistic'
)
}
def learn_path_distribution(
self,
training_paths: np.ndarray,
num_epochs: int
) -> None:
"""Learn path distribution from data."""
for epoch in range(num_epochs):
# Encode paths
latent = self.components['encoder'](training_paths)
# Learn dynamics
trajectories = self.components['dynamics'](latent)
# Decode paths
reconstructed = self.components['decoder'](trajectories)
# Update parameters
self._update_parameters(
training_paths, reconstructed)
Implementation Bridge
1. Continuous-Time Path Integral
class ContinuousTimePathIntegral:
"""Bridge between continuous time active inference and path integrals"""
def __init__(self, dim_states, dim_obs, dim_action):
self.continuous_agent = ContinuousTimeAgent(
dim_states=dim_states,
dim_obs=dim_obs,
dim_action=dim_action
)
self.path_computer = PathIntegralComputer()
def compute_optimal_path(self, initial_state, goal_state, horizon):
"""Compute optimal path using both frameworks"""
# Initialize path distribution
path_distribution = self.initialize_path_distribution(
initial_state, goal_state)
# Continuous time evolution
for t in range(horizon):
# Update beliefs using continuous time dynamics
self.continuous_agent.update_beliefs(
path_distribution.current_observation())
# Compute path integral
free_energy, paths = self.path_computer.compute_path_integral(
self.continuous_agent.internal_states,
self.continuous_agent.action,
horizon - t
)
# Update path distribution
path_distribution.update(paths, free_energy)
return path_distribution.optimal_path()
def initialize_path_distribution(self, initial_state, goal_state):
"""Initialize path distribution connecting states"""
return PathDistribution(
initial_state=initial_state,
goal_state=goal_state,
dynamics=self.continuous_agent.f,
observation=self.continuous_agent.g
)
2. Active Inference Integration
class ActiveInferenceBridge:
"""Integration of active inference with path integrals"""
def __init__(self):
self.free_energy = ContinuousTimeFreeEnergy()
self.path_integral = ContinuousTimePathIntegral()
self.active_inference = ActiveInferenceProcess()
def infer_optimal_policy(self, observation, goal):
"""Infer optimal policy using both frameworks"""
# Initialize belief states
beliefs = self.active_inference.initialize_beliefs(observation)
# Compute path integral free energy
path_fe, paths = self.path_integral.compute_optimal_path(
beliefs.mean, goal, horizon=self.active_inference.planning_horizon)
# Update beliefs using path information
beliefs = self.active_inference.update_beliefs_with_paths(
beliefs, paths, path_fe)
# Select action using both free energies
action = self.select_optimal_action(beliefs, paths)
return action, beliefs, paths
def select_optimal_action(self, beliefs, paths):
"""Select action using combined information"""
# Compute expected free energy
G = self.active_inference.compute_expected_free_energy(beliefs)
# Compute path integral contribution
path_contribution = self.path_integral.compute_action_contribution(paths)
# Combine and select optimal action
combined_objective = self.combine_objectives(G, path_contribution)
return self.active_inference.select_action(combined_objective)
3. Hierarchical Implementation
class HierarchicalPathIntegral:
"""Hierarchical implementation combining both frameworks"""
def __init__(self, layer_dims):
self.layers = []
for i in range(len(layer_dims) - 1):
self.layers.append(
HierarchicalLayer(
dim_lower=layer_dims[i],
dim_upper=layer_dims[i+1]
)
)
def process_hierarchy(self, observation):
"""Process through hierarchy using both frameworks"""
# Bottom-up pass with continuous time
current_state = observation
beliefs = []
for layer in self.layers:
# Continuous time belief update
layer_belief = layer.update_beliefs_continuous(current_state)
beliefs.append(layer_belief)
# Compute path integral
paths = layer.compute_paths(layer_belief)
current_state = layer.summarize_paths(paths)
# Top-down pass with path integrals
for layer, upper_belief in zip(reversed(self.layers), reversed(beliefs)):
# Generate predictions using paths
predicted_paths = layer.generate_predicted_paths(upper_belief)
# Update lower level using both frameworks
layer.update_lower_level(predicted_paths)
return self.layers[0].get_action()
4. Precision Dynamics
class PrecisionDynamics:
"""Precision updating using both frameworks"""
def __init__(self):
self.continuous_precision = PrecisionEstimator(mode='continuous')
self.path_precision = PathPrecisionComputer()
def update_precision(self, beliefs, paths):
"""Update precision using both sources of information"""
# Compute continuous time precision
continuous_prec = self.continuous_precision.estimate(beliefs)
# Compute path-based precision
path_prec = self.path_precision.compute(paths)
# Combine precision estimates
return self.combine_precision(continuous_prec, path_prec)
def combine_precision(self, continuous_prec, path_prec):
"""Combine precision estimates optimally"""
# Compute optimal combination weights
weights = self.compute_optimal_weights(
continuous_prec, path_prec)
# Return weighted combination
return weights[0] * continuous_prec + weights[1] * path_prec
Advanced Concepts
1. Quantum Extensions
- quantum_path_integral connects to quantum_free_energy_principle
- Feynman path integral formulation
- Phase space quantization methods
- Quantum fluctuations and corrections
- Decoherence mechanisms
2. Statistical Physics
- thermodynamic_formulation links to free_energy_principle
- Free energy landscapes and barriers
- Phase transitions and critical points
- Fluctuation theorems and dissipation
- Non-equilibrium processes
3. Information Geometry
- fisher_rao_metric
- Natural gradient methods
- Information distance measures
- Statistical manifold structure
- Geodesic flows
4. Control Theory
- optimal_control
- Linear-Quadratic-Gaussian control
- Model predictive control
- Stochastic optimal control
- Path integral control
5. Geometric Mechanics
- symplectic_geometry
- Symplectic manifolds
- Poisson structures
- Momentum maps
- Reduction theory
6. Field Theory Extensions
- field_theory
- Continuous systems
- Gauge theories
- Symmetry principles
- Conservation laws
Computational Methods
1. Numerical Integration
- symplectic_integration
- Structure-preserving methods
- Energy conservation
- Geometric integrators
- Adaptive timesteps
2. Path Sampling
- monte_carlo_methods
- Importance sampling
- Sequential Monte Carlo
- Hamiltonian Monte Carlo
- Parallel tempering
3. Optimization
- variational_optimization
- Natural gradient descent
- Stochastic optimization
- Trust region methods
- Adaptive learning rates
4. Machine Learning Integration
- deep_learning
- Neural SDEs
- Normalizing flows
- Graph neural networks
- Attention mechanisms
5. Probabilistic Methods
- probabilistic_programming
- MCMC sampling
- Variational inference
- Message passing
- Belief propagation
Applications
1. Quantum Systems
- quantum_control
- Quantum state preparation
- Error correction
- Decoherence control
- Quantum trajectories
2. Complex Systems
- self_organization
- Pattern formation
- Collective behavior
- Emergent properties
- Critical phenomena
3. Biological Systems
- molecular_dynamics
- Protein folding
- Reaction pathways
- Cellular processes
- Neural dynamics
4. Artificial Systems
- robotics_control
- Motion planning
- Sensorimotor control
- Learning from demonstration
- Adaptive behavior
5. Cognitive Systems
- cognitive_architectures
- Perception-action loops
- Memory formation
- Decision making
- Learning dynamics
6. Social Systems
- collective_behavior
- Opinion dynamics
- Social learning
- Cultural evolution
- Network effects
Research Directions
1. Theoretical Extensions
- relativistic_path_integral
- Spacetime formulation
- Causal structure
- Lorentz invariance
- Gravitational effects
2. Computational Methods
- tensor_networks
- Quantum simulation
- Renormalization methods
- Entanglement structure
- Numerical efficiency
3. Applications
- quantum_computation
- Quantum algorithms
- Error correction
- Quantum control
- Quantum simulation
4. Biological Applications
- systems_biology
- Metabolic networks
- Gene regulation
- Cell signaling
- Development
5. Artificial Life
- artificial_life
- Self-replication
- Evolutionary dynamics
- Morphogenesis
- Adaptive behavior
Implementation Considerations
1. Numerical Stability
- numerical_methods
- Error analysis
- Stability criteria
- Convergence rates
- Adaptive methods
2. Computational Efficiency
- parallel_computing
- GPU acceleration
- Distributed computing
- Algorithm optimization
- Memory management
3. Software Design
- software_architecture
- Modular design
- Testing strategies
- Documentation
- Version control
4. Testing Framework
- testing_methodology
- Unit tests
- Integration tests
- Performance benchmarks
- Validation suites
5. Deployment Strategies
- deployment_patterns
- Containerization
- Microservices
- API design
- Monitoring
Mathematical Appendices
A. Differential Geometry
- differential_forms
- Exterior calculus
- Integration theory
- Stokes' theorem
- de Rham cohomology
B. Functional Analysis
- function_spaces
- Sobolev spaces
- Banach spaces
- Operator theory
- Spectral theory
C. Probability Theory
- measure_theory
- Probability measures
- Stochastic processes
- Martingale theory
- Large deviations
Code Examples
A. Basic Usage
# Example of basic path integral computation
def basic_path_integral_example():
# Initialize computer
computer = PathIntegralComputer()
# Define initial state and policy
initial_state = np.zeros(3)
policy = SimplePolicy(action_dim=2)
# Compute path integral
free_energy, metrics = computer.compute_path_integral(
initial_state, policy, horizon=10)
return free_energy, metrics
B. Advanced Usage
# Example of advanced path integral computation
def advanced_path_integral_example():
# Initialize integrators
geometric = GeometricIntegrator()
stochastic = StochasticIntegrator()
symplectic = SymplecticIntegrator()
# Define problem
state = np.random.randn(3)
momentum = np.random.randn(3)
time = 1.0
# Compute different trajectories
geometric_path = geometric.integrate_geodesic(
state, momentum, time)
stochastic_path = stochastic.integrate_sde(
state, time, noise=0.1)
hamiltonian_path = symplectic.integrate_hamilton(
state, momentum, time)
return {
'geometric': geometric_path,
'stochastic': stochastic_path,
'hamiltonian': hamiltonian_path
}
References
- feynman_1965 - "The Feynman Lectures on Physics, Vol. III"
- kleinert_2009 - "Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics"
- friston_2019 - "A Free Energy Principle for a Particular Physics"
- seifert_2012 - "Stochastic Thermodynamics, Fluctuation Theorems"
- amari_2000 - "Information Geometry and Its Applications"
- marsden_2001 - "Discrete Mechanics and Variational Integrators"