зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
6.4 KiB
6.4 KiB
| type | id | created | modified | tags | aliases | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| verification | path_integral_verification_001 | 2024-02-05 | 2024-02-05 |
|
|
Path Integral Documentation Verification
Core Mathematical Foundations
Measure Theory Verification
-
Functional Integration
- Add link to radon_nikodym_theorem for measure relationships
- Verify lebesgue_integration connection to path measures
- Include cylinder_measure construction for path spaces
-
Probability Measures
- Link to gaussian_measures for Wiener process
- Add kolmogorov_extension for infinite dimensions
- Include weak_convergence of measures
Functional Analysis Enhancement
-
Topology
class FunctionalTopology: """Enhanced topological structure for path spaces.""" def __init__(self): self.norm_types = { 'uniform': self._uniform_norm, 'sobolev': self._sobolev_norm, 'holder': self._holder_norm }Links to:
-
Operators
- Add unbounded_operators treatment
- Include spectral_theory for path operators
- Link to fredholm_theory for integral operators
Statistical Physics Connections
Partition Function Accuracy
-
Normalization
def verify_partition_normalization(Z: Callable, beta_range: np.ndarray) -> bool: """Verify partition function normalization.""" for beta in beta_range: if not np.isclose( integrate_states(lambda x: exp(-beta * H(x)) / Z(beta)), 1.0, rtol=1e-5 ): return False return TrueLinks to:
-
Physical Properties
- Add fluctuation_dissipation relations
- Include onsager_relations
- Link to kubo_formulas
Active Inference Implementation
Free Energy Computation
-
Numerical Accuracy
class FreeEnergyValidator: """Validate free energy computations.""" def verify_bound(self, free_energy: Callable, log_evidence: Callable) -> bool: """Verify variational free energy bounds log evidence.""" samples = self.generate_test_samples() F = free_energy(samples) L = log_evidence(samples) return np.all(F >= L) # Check bound holdsLinks to:
-
Gradient Accuracy
- Add natural_gradient verification
- Include fisher_information computation
- Link to wasserstein_metrics
Path Space Methods
- Discretization
Links to:class PathDiscretizationValidator: """Validate path discretization methods.""" def verify_convergence_order(self, scheme: Callable, exact_solution: Callable, dt_range: np.ndarray) -> int: """Verify numerical convergence order.""" errors = [] for dt in dt_range: numerical = scheme(dt) error = np.max(np.abs(numerical - exact_solution)) errors.append(error) # Compute convergence order orders = np.log(errors[:-1]/errors[1:]) / \ np.log(dt_range[:-1]/dt_range[1:]) return np.mean(orders)
Implementation Verification
Numerical Methods
-
Integration Schemes
class IntegrationVerifier: """Verify numerical integration methods.""" def verify_symplectic(self, integrator: Callable, hamiltonian: Callable, duration: float) -> bool: """Verify symplectic property preservation.""" initial_state = self.random_state() trajectory = integrator(hamiltonian, initial_state, duration) return self.check_symplectic_form_conservation(trajectory)Links to:
-
Sampling Methods
- Add mcmc_diagnostics
- Include effective_sample_size
- Link to convergence_diagnostics
Performance Optimization
- Computational Efficiency
Links to:class PerformanceValidator: """Validate computational performance.""" def benchmark_scaling(self, method: Callable, problem_sizes: List[int]) -> Dict[str, float]: """Analyze computational scaling.""" times = [] memory = [] for size in problem_sizes: t, m = self.measure_performance(method, size) times.append(t) memory.append(m) return { 'time_complexity': self.fit_scaling_law(times), 'space_complexity': self.fit_scaling_law(memory) }
Documentation Updates
Theory Documents
-
Path Integral Theory
- Add stochastic_analysis section
- Enhance field_theory connections
- Include quantum_mechanics analogies
-
Implementation Guide
- Add error_estimation methods
- Include adaptive_methods
- Link to performance_optimization
Synthesis Document
-
Bridge Concepts
- Add discretization_theory
- Include numerical_analysis
- Link to computational_physics
-
Validation Methods
- Add unit_testing framework
- Include integration_testing
- Link to continuous_integration
References
- hairer_2006 - Geometric Numerical Integration
- glimm_1987 - Quantum Physics: A Functional Integral Point of View
- pavliotis_2014 - Stochastic Processes and Applications
- graham_2006 - Computational Methods for Physics