cognitive/knowledge_base/mathematics/path_integral_verification.md
Daniel Ari Friedman 6caa1a7cb1 Update
2025-02-07 08:16:25 -08:00

6.4 KiB

type id created modified tags aliases
verification path_integral_verification_001 2024-02-05 2024-02-05
verification
path-integrals
technical-accuracy
documentation
path-verification
documentation-verification

Path Integral Documentation Verification

Core Mathematical Foundations

Measure Theory Verification

  1. Functional Integration

  2. Probability Measures

Functional Analysis Enhancement

  1. Topology

    class FunctionalTopology:
        """Enhanced topological structure for path spaces."""
        def __init__(self):
            self.norm_types = {
                'uniform': self._uniform_norm,
                'sobolev': self._sobolev_norm,
                'holder': self._holder_norm
            }
    

    Links to:

  2. Operators

Statistical Physics Connections

Partition Function Accuracy

  1. Normalization

    def verify_partition_normalization(Z: Callable,
                                     beta_range: np.ndarray) -> bool:
        """Verify partition function normalization."""
        for beta in beta_range:
            if not np.isclose(
                integrate_states(lambda x: exp(-beta * H(x)) / Z(beta)),
                1.0,
                rtol=1e-5
            ):
                return False
        return True
    

    Links to:

  2. Physical Properties

Active Inference Implementation

Free Energy Computation

  1. Numerical Accuracy

    class FreeEnergyValidator:
        """Validate free energy computations."""
    
        def verify_bound(self,
                        free_energy: Callable,
                        log_evidence: Callable) -> bool:
            """Verify variational free energy bounds log evidence."""
            samples = self.generate_test_samples()
            F = free_energy(samples)
            L = log_evidence(samples)
            return np.all(F >= L)  # Check bound holds
    

    Links to:

  2. Gradient Accuracy

Path Space Methods

  1. Discretization
    class PathDiscretizationValidator:
        """Validate path discretization methods."""
    
        def verify_convergence_order(self,
                                   scheme: Callable,
                                   exact_solution: Callable,
                                   dt_range: np.ndarray) -> int:
            """Verify numerical convergence order."""
            errors = []
            for dt in dt_range:
                numerical = scheme(dt)
                error = np.max(np.abs(numerical - exact_solution))
                errors.append(error)
    
            # Compute convergence order
            orders = np.log(errors[:-1]/errors[1:]) / \
                    np.log(dt_range[:-1]/dt_range[1:])
            return np.mean(orders)
    
    Links to:

Implementation Verification

Numerical Methods

  1. Integration Schemes

    class IntegrationVerifier:
        """Verify numerical integration methods."""
    
        def verify_symplectic(self,
                            integrator: Callable,
                            hamiltonian: Callable,
                            duration: float) -> bool:
            """Verify symplectic property preservation."""
            initial_state = self.random_state()
            trajectory = integrator(hamiltonian, initial_state, duration)
    
            return self.check_symplectic_form_conservation(trajectory)
    

    Links to:

  2. Sampling Methods

Performance Optimization

  1. Computational Efficiency
    class PerformanceValidator:
        """Validate computational performance."""
    
        def benchmark_scaling(self,
                            method: Callable,
                            problem_sizes: List[int]) -> Dict[str, float]:
            """Analyze computational scaling."""
            times = []
            memory = []
            for size in problem_sizes:
                t, m = self.measure_performance(method, size)
                times.append(t)
                memory.append(m)
    
            return {
                'time_complexity': self.fit_scaling_law(times),
                'space_complexity': self.fit_scaling_law(memory)
            }
    
    Links to:

Documentation Updates

Theory Documents

  1. Path Integral Theory

  2. Implementation Guide

Synthesis Document

  1. Bridge Concepts

  2. Validation Methods

References