зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
9.3 KiB
9.3 KiB
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | |||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Probabilistic Graphical Models | concept | stable | 2024-03-15 | advanced | 1 |
|
|
Probabilistic Graphical Models
Overview
Probabilistic Graphical Models (PGMs) provide a framework for representing and reasoning about complex probability distributions using graph structures. They combine probability theory with graph theory to create powerful tools for modeling uncertainty, causality, and dependencies in complex systems.
Mathematical Foundation
Graph Representation
Directed Graphs (Bayesian Networks)
P(X_1,...,X_n) = \prod_{i=1}^n P(X_i|Pa(X_i))
where:
X_iare random variablesPa(X_i)are parents ofX_i
Undirected Graphs (Markov Random Fields)
P(X_1,...,X_n) = \frac{1}{Z}\prod_{C \in \mathcal{C}} \phi_C(X_C)
where:
\mathcal{C}are maximal cliques\phi_Care potential functionsZis partition function
Implementation
Graph Structure
class ProbabilisticGraph:
def __init__(self,
nodes: List[str],
edges: List[Tuple[str, str]],
directed: bool = True):
"""Initialize probabilistic graph.
Args:
nodes: List of node names
edges: List of edges
directed: Whether graph is directed
"""
self.nodes = nodes
self.edges = edges
self.directed = directed
# Initialize graph structure
self.adjacency = self._build_adjacency()
self.factors = {}
def _build_adjacency(self) -> Dict[str, Set[str]]:
"""Build adjacency structure.
Returns:
adjacency: Adjacency dictionary
"""
adj = {node: set() for node in self.nodes}
for i, j in self.edges:
adj[i].add(j)
if not self.directed:
adj[j].add(i)
return adj
def add_factor(self,
variables: List[str],
factor: torch.Tensor):
"""Add factor to graph.
Args:
variables: Variables in factor
factor: Factor tensor
"""
key = tuple(sorted(variables))
self.factors[key] = factor
def get_markov_blanket(self,
node: str) -> Set[str]:
"""Get Markov blanket of node.
Args:
node: Target node
Returns:
blanket: Markov blanket
"""
if self.directed:
# For Bayesian networks
parents = self.get_parents(node)
children = self.get_children(node)
spouses = set().union(*[
self.get_parents(child)
for child in children
])
return parents.union(children).union(spouses)
else:
# For Markov random fields
return self.adjacency[node]
Inference Algorithms
class InferenceEngine:
def __init__(self,
graph: ProbabilisticGraph):
"""Initialize inference engine.
Args:
graph: Probabilistic graph
"""
self.graph = graph
def variable_elimination(self,
query_var: str,
evidence: Dict[str, Any]) -> torch.Tensor:
"""Perform variable elimination.
Args:
query_var: Query variable
evidence: Evidence dictionary
Returns:
distribution: Resulting distribution
"""
# Get elimination ordering
ordering = self.get_elimination_ordering(query_var, evidence)
# Initialize factor list
factors = self.graph.factors.copy()
# Eliminate variables
for var in ordering:
# Collect relevant factors
relevant_factors = self.get_relevant_factors(var, factors)
# Multiply factors
product = self.multiply_factors(relevant_factors)
# Marginalize
new_factor = self.marginalize(product, var)
# Update factor list
factors[self.get_factor_key(new_factor)] = new_factor
return self.normalize(factors[query_var])
def belief_propagation(self,
max_iterations: int = 100,
tolerance: float = 1e-6) -> Dict[str, torch.Tensor]:
"""Perform belief propagation.
Args:
max_iterations: Maximum iterations
tolerance: Convergence tolerance
Returns:
beliefs: Node beliefs
"""
# Initialize messages
messages = self.initialize_messages()
# Message passing
for _ in range(max_iterations):
old_messages = messages.copy()
# Update messages
for i, j in self.graph.edges:
messages[(i,j)] = self.compute_message(i, j, messages)
# Check convergence
if self.check_convergence(messages, old_messages, tolerance):
break
# Compute final beliefs
return self.compute_beliefs(messages)
Learning Algorithms
class StructureLearning:
def __init__(self,
data: torch.Tensor,
nodes: List[str]):
"""Initialize structure learning.
Args:
data: Training data
nodes: Node names
"""
self.data = data
self.nodes = nodes
def score_based_learning(self,
score_fn: str = 'bic') -> ProbabilisticGraph:
"""Learn structure using score-based method.
Args:
score_fn: Scoring function
Returns:
graph: Learned graph
"""
# Initialize empty graph
graph = ProbabilisticGraph(self.nodes, [])
# Hill climbing
while True:
best_score = float('-inf')
best_operation = None
# Try all possible operations
for op in self.get_possible_operations(graph):
# Apply operation
new_graph = self.apply_operation(graph, op)
# Compute score
score = self.compute_score(new_graph, score_fn)
if score > best_score:
best_score = score
best_operation = op
if best_operation is None:
break
# Apply best operation
graph = self.apply_operation(graph, best_operation)
return graph
def constraint_based_learning(self) -> ProbabilisticGraph:
"""Learn structure using constraint-based method.
Returns:
graph: Learned graph
"""
# Start with complete graph
edges = [
(i, j) for i in self.nodes
for j in self.nodes if i != j
]
graph = ProbabilisticGraph(self.nodes, edges)
# Remove edges based on CI tests
for i in self.nodes:
for j in self.nodes:
if i == j:
continue
# Find separating set
sep_set = self.find_separating_set(i, j, graph)
if sep_set is not None:
graph.remove_edge(i, j)
# Orient edges
return self.orient_edges(graph)
Applications
Bayesian Networks
Causal Modeling
- Causal relationships
- Intervention analysis
- Counterfactual reasoning
Expert Systems
- Medical diagnosis
- Fault diagnosis
- Decision support
Markov Random Fields
Computer Vision
- Image segmentation
- Object recognition
- Scene understanding
Natural Language
- Part-of-speech tagging
- Named entity recognition
- Semantic parsing
Best Practices
Model Design
- Choose appropriate graph type
- Define clear semantics
- Handle missing data
- Consider scalability
Implementation
- Efficient data structures
- Optimize inference
- Manage memory
- Profile performance
Validation
- Cross-validation
- Structure validation
- Parameter validation
- Inference validation
Common Issues
Technical Challenges
- Inference intractability
- Structure learning complexity
- Parameter estimation
- Model selection
Solutions
- Approximate inference
- Sparse structures
- Parameter tying
- Regularization