зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
8.3 KiB
8.3 KiB
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | ||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Stochastic Processes | concept | stable | 2024-03-15 | advanced | 1 |
|
|
Stochastic Processes
Overview
Stochastic Processes provide a mathematical framework for analyzing systems with random dynamics. They form the foundation for understanding uncertainty and variability in complex systems, from molecular dynamics to ecological populations and neural activity.
Mathematical Foundation
Probability Spaces
Filtered Space
(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})
where:
\Omegais sample space\mathcal{F}is σ-algebra\{\mathcal{F}_t\}is filtration\mathbb{P}is probability measure
Martingales
\mathbb{E}[X_{t+s}|\mathcal{F}_t] = X_t
where:
X_tis martingale process\mathcal{F}_tis filtration at timet
Stochastic Differential Equations
Itô Process
dX_t = \mu(X_t,t)dt + \sigma(X_t,t)dW_t
where:
\muis drift term\sigmais diffusion termW_tis Wiener process
Implementation
Stochastic Simulator
class StochasticProcess:
def __init__(self,
drift: Callable,
diffusion: Callable,
dimension: int,
seed: Optional[int] = None):
"""Initialize stochastic process.
Args:
drift: Drift function μ(x,t)
diffusion: Diffusion function σ(x,t)
dimension: State dimension
seed: Random seed
"""
self.drift = drift
self.diffusion = diffusion
self.dim = dimension
# Initialize random state
self.rng = np.random.RandomState(seed)
# Initialize process state
self.state = np.zeros(dimension)
self.time = 0.0
def step(self,
dt: float = 0.01) -> np.ndarray:
"""Evolve process one step using Euler-Maruyama.
Args:
dt: Time step
Returns:
state: Updated state
"""
# Generate Wiener increment
dW = self.rng.normal(0, np.sqrt(dt), self.dim)
# Compute drift and diffusion
drift = self.drift(self.state, self.time)
diff = self.diffusion(self.state, self.time)
# Update state
self.state += drift * dt + diff * dW
self.time += dt
return self.state
def simulate(self,
duration: float,
dt: float = 0.01) -> Tuple[np.ndarray, np.ndarray]:
"""Simulate process trajectory.
Args:
duration: Simulation duration
dt: Time step
Returns:
times: Time points
states: State trajectory
"""
n_steps = int(duration / dt)
times = np.linspace(0, duration, n_steps)
states = np.zeros((n_steps, self.dim))
for i in range(n_steps):
states[i] = self.step(dt)
return times, states
Markov Chain
class MarkovChain:
def __init__(self,
transition_matrix: np.ndarray,
state_space: List[Any]):
"""Initialize Markov chain.
Args:
transition_matrix: State transition probabilities
state_space: List of possible states
"""
self.P = transition_matrix
self.states = state_space
self.n_states = len(state_space)
# Validate transition matrix
assert np.allclose(np.sum(self.P, axis=1), 1)
# Initialize state
self.current_state = 0
def step(self) -> Any:
"""Take one step in chain.
Returns:
state: New state
"""
# Sample next state
self.current_state = np.random.choice(
self.n_states,
p=self.P[self.current_state]
)
return self.states[self.current_state]
def compute_stationary(self) -> np.ndarray:
"""Compute stationary distribution.
Returns:
pi: Stationary distribution
"""
# Solve eigenvalue problem
eigenvals, eigenvecs = np.linalg.eig(self.P.T)
# Find eigenvector for eigenvalue 1
idx = np.argmin(np.abs(eigenvals - 1))
pi = np.real(eigenvecs[:, idx])
# Normalize
pi = pi / np.sum(pi)
return pi
Stochastic Differential Equations
class SDESolver:
def __init__(self,
sde: StochasticProcess,
method: str = 'euler'):
"""Initialize SDE solver.
Args:
sde: Stochastic process
method: Integration method
"""
self.sde = sde
self.method = method
def solve(self,
x0: np.ndarray,
duration: float,
dt: float = 0.01) -> Tuple[np.ndarray, np.ndarray]:
"""Solve SDE numerically.
Args:
x0: Initial condition
duration: Integration duration
dt: Time step
Returns:
times: Time points
solution: Solution trajectory
"""
# Initialize
n_steps = int(duration / dt)
times = np.linspace(0, duration, n_steps)
solution = np.zeros((n_steps, self.sde.dim))
solution[0] = x0
# Integration loop
for i in range(1, n_steps):
if self.method == 'euler':
solution[i] = self._euler_step(
solution[i-1], times[i-1], dt
)
elif self.method == 'milstein':
solution[i] = self._milstein_step(
solution[i-1], times[i-1], dt
)
return times, solution
def _euler_step(self,
x: np.ndarray,
t: float,
dt: float) -> np.ndarray:
"""Euler-Maruyama step."""
dW = np.random.normal(0, np.sqrt(dt), self.sde.dim)
return (x +
self.sde.drift(x, t) * dt +
self.sde.diffusion(x, t) * dW)
Applications
Physical Systems
Molecular Dynamics
- Brownian motion
- Diffusion processes
- Chemical reactions
- Thermal fluctuations
Quantum Systems
- Quantum noise
- Open systems
- Decoherence
- Measurement
Biological Systems
Population Dynamics
- Birth-death processes
- Competition models
- Epidemic spread
- Genetic drift
Neural Systems
- Spike trains
- Synaptic noise
- Population coding
- Decision making
Financial Systems
Market Models
- Price processes
- Option pricing
- Risk assessment
- Portfolio theory
Economic Systems
- Agent-based models
- Game theory
- Strategic behavior
- Market dynamics
Advanced Topics
Random Fields
- Spatial processes
- Gaussian fields
- Point processes
- Lattice models
Filtering Theory
- Kalman filtering
- Particle filters
- State estimation
- Data assimilation
Large Deviations
- Rate functions
- Asymptotic behavior
- Rare events
- Phase transitions
Best Practices
Modeling
- Choose appropriate noise
- Validate assumptions
- Consider timescales
- Handle boundaries
Implementation
- Numerical stability
- Error control
- Efficient sampling
- Convergence checks
Analysis
- Statistical tests
- Uncertainty quantification
- Robustness checks
- Validation methods
Common Issues
Technical Challenges
- Numerical instability
- Rare event sampling
- High dimensionality
- Long-time behavior
Solutions
- Adaptive stepping
- Importance sampling
- Dimension reduction
- Multi-scale methods