cognitive/knowledge_base/mathematics/variational_calculus.md
Daniel Ari Friedman 6caa1a7cb1 Update
2025-02-07 08:16:25 -08:00

11 KiB

Variational Calculus in Cognitive Modeling


type: mathematical_concept id: variational_calculus_001 created: 2024-02-06 modified: 2024-03-15 tags: [mathematics, variational-calculus, optimization, euler-lagrange, variational-inference] aliases: [calculus-of-variations, functional-optimization, variational-methods] complexity: advanced processing_priority: 1 semantic_relations:


Overview

Variational calculus provides the mathematical foundation for optimizing functionals and understanding the principles of least action in cognitive systems (see active_inference, optimal_control). This document explores variational methods and their applications in active inference. For probabilistic applications, see variational_methods, and for physical applications, see path_integral_free_energy.

Mathematical Framework

1. Variational Principles

The calculus of variations (see functional_analysis, differential_geometry) deals with functionals J[f] that map functions to real numbers:

J[f] = \int_a^b L(x, f(x), f'(x))dx

where:

2. Euler-Lagrange Equation

The necessary condition for optimality (see optimization_theory, calculus_of_variations):

\frac{\partial L}{\partial f} - \frac{d}{dx}\frac{\partial L}{\partial f'} = 0

3. Connection to Inference

In variational inference (see variational_inference, bayesian_inference, information_theory), we optimize over probability distributions:

\mathcal{F}[q] = \mathbb{E}_q[\ln q(z) - \ln p(x,z)]

where:

Implementation Framework

1. Functional Optimization

class FunctionalOptimizer:
    def __init__(self):
        self.components = {
            'derivative': FunctionalDerivative(
                method='adjoint',
                regularization=True
            ),
            'solver': BoundaryValueSolver(
                method='shooting',
                tolerance='adaptive'
            ),
            'constraints': ConstraintHandler(
                type='equality',
                method='lagrange'
            )
        }
    
    def optimize_functional(
        self,
        functional: Callable,
        initial_guess: Function,
        boundary_conditions: BoundaryConditions
    ) -> Function:
        """Optimize functional with boundary conditions"""
        # Compute functional derivative
        derivative = self.components['derivative'].compute(
            functional, initial_guess)
            
        # Handle constraints
        constrained_problem = self.components['constraints'].apply(
            derivative, boundary_conditions)
            
        # Solve boundary value problem
        solution = self.components['solver'].solve(
            constrained_problem)
            
        return solution

2. Variational Inference

class VariationalOptimizer:
    def __init__(self):
        self.components = {
            'distribution': DistributionOptimizer(
                parameterization='natural',
                constraints='probability'
            ),
            'divergence': DivergenceComputer(
                type='kullback_leibler',
                estimator='monte_carlo'
            ),
            'gradient': NaturalGradient(
                metric='fisher',
                damping=True
            )
        }
    
    def optimize_distribution(
        self,
        target_distribution: Distribution,
        variational_family: DistributionFamily,
        n_iterations: int
    ) -> Distribution:
        """Optimize variational distribution"""
        # Initialize distribution
        q = self.components['distribution'].initialize(
            variational_family)
            
        for _ in range(n_iterations):
            # Compute divergence
            kl = self.components['divergence'].compute(
                q, target_distribution)
                
            # Compute natural gradient
            grad = self.components['gradient'].compute(
                kl, q)
                
            # Update distribution
            q = self.components['distribution'].update(
                q, grad)
                
        return q

3. Path Integration

class PathIntegrator:
    def __init__(self):
        self.components = {
            'action': ActionComputer(
                type='classical',
                discretization='symplectic'
            ),
            'sampler': PathSampler(
                method='hamiltonian',
                adaptation='online'
            ),
            'optimizer': TrajectoryOptimizer(
                method='adjoint',
                constraints='energy'
            )
        }
    
    def compute_path_integral(
        self,
        lagrangian: Callable,
        boundary_conditions: Tuple[State, State],
        n_samples: int
    ) -> Tuple[np.ndarray, float]:
        """Compute path integral with importance sampling"""
        # Sample paths
        paths = self.components['sampler'].sample(
            boundary_conditions, n_samples)
            
        # Compute actions
        actions = self.components['action'].compute(
            lagrangian, paths)
            
        # Optimize trajectory
        optimal_path = self.components['optimizer'].optimize(
            paths, actions)
            
        return optimal_path, actions.min()

Advanced Applications

1. Statistical Physics

2. Machine Learning

3. Optimal Control

Theoretical Extensions

1. Information Geometry

2. Quantum Extensions

3. Stochastic Methods

Applications

1. Physics

2. Engineering

3. Machine Learning

Research Directions

1. Theoretical Advances

2. Computational Methods

3. Applications

References

See Also

References