cognitive/knowledge_base/mathematics/variational_methods.md
Daniel Ari Friedman 6caa1a7cb1 Update
2025-02-07 08:16:25 -08:00

11 KiB

Variational Methods in Cognitive Modeling


type: mathematical_concept id: variational_methods_001 created: 2024-02-05 modified: 2024-03-15 tags: [mathematics, variational-methods, optimization, inference, variational-inference] aliases: [variational-calculus, variational-inference, variational-bayes] semantic_relations:


Overview

Variational methods provide the mathematical foundation for approximating complex probability distributions and optimizing free energy in cognitive modeling. This document outlines key mathematical principles, implementation approaches, and applications, with a particular focus on variational inference. For foundational mathematical concepts, see variational_calculus, and for physical applications, see path_integral_free_energy.

Theoretical Foundations

Variational Inference Framework

The core idea of variational inference (see bayesian_inference, information_theory) is to approximate complex posterior distributions p(z|x) with simpler variational distributions q(z) by minimizing the KL divergence:

q^*(z) = \arg\min_{q \in \mathcal{Q}} \text{KL}(q(z) || p(z|x))

This optimization is equivalent to maximizing the Evidence Lower BOund (ELBO) (see free_energy, information_theory):

\text{ELBO}(q) = \mathbb{E}_{q(z)}[\ln p(x,z) - \ln q(z)]

Mean Field Approximation

Under the mean field assumption (see statistical_physics, information_geometry), the variational distribution factorizes as:

q(z) = \prod_{i=1}^M q_i(z_i)

This leads to the coordinate ascent updates (see optimization_theory, natural_gradients):

\ln q_j^*(z_j) = \mathbb{E}_{q_{-j}}[\ln p(x,z)] + \text{const}

Stochastic Variational Inference

For large-scale problems (see stochastic_optimization, monte_carlo_methods), stochastic optimization of the ELBO:

\nabla_{\phi} \text{ELBO} = \mathbb{E}_{q(z;\phi)}[\nabla_{\phi} \ln q(z;\phi)(\ln p(x,z) - \ln q(z;\phi))]

Advanced Implementation

1. Variational Autoencoder

class VariationalAutoencoder:
    def __init__(self):
        self.components = {
            'encoder': ProbabilisticEncoder(
                architecture='hierarchical',
                distribution='gaussian'
            ),
            'decoder': ProbabilisticDecoder(
                architecture='hierarchical',
                distribution='bernoulli'
            ),
            'prior': LatentPrior(
                type='standard_normal',
                learnable=True
            )
        }
        
    def compute_elbo(
        self,
        x: torch.Tensor,
        n_samples: int = 1
    ) -> torch.Tensor:
        """Compute ELBO using reparameterization trick"""
        # Encode input
        mu, log_var = self.components['encoder'](x)
        
        # Sample latent variables
        z = self.reparameterize(mu, log_var, n_samples)
        
        # Decode samples
        x_recon = self.components['decoder'](z)
        
        # Compute ELBO terms
        recon_loss = self.reconstruction_loss(x_recon, x)
        kl_loss = self.kl_divergence(mu, log_var)
        
        return recon_loss - kl_loss

2. Normalizing Flow

class NormalizingFlow:
    def __init__(self):
        self.components = {
            'base': BaseDensity(
                type='gaussian',
                learnable=True
            ),
            'transforms': TransformSequence(
                architectures=['planar', 'radial'],
                n_layers=10
            ),
            'optimizer': FlowOptimizer(
                method='adam',
                learning_rate='adaptive'
            )
        }
        
    def forward(
        self,
        x: torch.Tensor,
        return_logdet: bool = True
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Forward pass through flow"""
        z = x
        log_det = 0.0
        
        for transform in self.components['transforms']:
            z, ldj = transform(z)
            log_det += ldj
            
        if return_logdet:
            return z, log_det
        return z

3. Amortized Inference

class AmortizedInference:
    def __init__(self):
        self.components = {
            'inference_network': InferenceNetwork(
                architecture='residual',
                uncertainty='learnable'
            ),
            'generative_model': GenerativeModel(
                type='hierarchical',
                latent_dims=[64, 32, 16]
            ),
            'training': AmortizedTrainer(
                method='importance_weighted',
                n_particles=10
            )
        }
        
    def infer(
        self,
        x: torch.Tensor,
        n_samples: int = 1
    ) -> Distribution:
        """Perform amortized inference"""
        # Get variational parameters
        params = self.components['inference_network'](x)
        
        # Sample from variational distribution
        q = self.construct_distribution(params)
        z = q.rsample(n_samples)
        
        # Compute importance weights
        log_weights = (
            self.components['generative_model'].log_prob(x, z) -
            q.log_prob(z)
        )
        
        return self.reweight_distribution(q, log_weights)

Advanced Methods

1. Structured Inference

2. Implicit Models

3. Sequential Methods

Applications

1. Probabilistic Programming

2. Deep Learning

3. State Space Models

Research Directions

1. Theoretical Extensions

2. Scalable Methods

3. Applications

References

  • blei_2017 - "Variational Inference: A Review for Statisticians"
  • kingma_2014 - "Auto-Encoding Variational Bayes"
  • rezende_2015 - "Variational Inference with Normalizing Flows"
  • hoffman_2013 - "Stochastic Variational Inference"

See Also

Numerical Methods

Optimization Algorithms

Sampling Methods

Implementation Considerations

Validation Framework

Quality Metrics

class VariationalMetrics:
    """Quality metrics for variational methods."""
    
    @staticmethod
    def compute_kl_divergence(p: np.ndarray, q: np.ndarray) -> float:
        """Compute KL divergence between distributions."""
        return np.sum(p * (np.log(p + 1e-10) - np.log(q + 1e-10)))
    
    @staticmethod
    def compute_elbo(model: GenerativeModel,
                    variational_dist: Distribution,
                    data: np.ndarray) -> float:
        """Compute Evidence Lower BOund."""
        return model.expected_log_likelihood(data, variational_dist) - \
               model.kl_divergence(variational_dist)

Performance Analysis

Integration Points

Theory Integration

References