11 KiB
Variational Methods in Cognitive Modeling
type: mathematical_concept id: variational_methods_001 created: 2024-02-05 modified: 2024-03-15 tags: [mathematics, variational-methods, optimization, inference, variational-inference] aliases: [variational-calculus, variational-inference, variational-bayes] semantic_relations:
- type: implements links:
- type: mathematical_basis links:
- type: relates links:
- type: applications links:
- type: documented_by links:
Overview
Variational methods provide the mathematical foundation for approximating complex probability distributions and optimizing free energy in cognitive modeling. This document outlines key mathematical principles, implementation approaches, and applications, with a particular focus on variational inference. For foundational mathematical concepts, see variational_calculus, and for physical applications, see path_integral_free_energy.
Theoretical Foundations
Variational Inference Framework
The core idea of variational inference (see bayesian_inference, information_theory) is to approximate complex posterior distributions p(z|x) with simpler variational distributions q(z) by minimizing the KL divergence:
q^*(z) = \arg\min_{q \in \mathcal{Q}} \text{KL}(q(z) || p(z|x))
This optimization is equivalent to maximizing the Evidence Lower BOund (ELBO) (see free_energy, information_theory):
\text{ELBO}(q) = \mathbb{E}_{q(z)}[\ln p(x,z) - \ln q(z)]
Mean Field Approximation
Under the mean field assumption (see statistical_physics, information_geometry), the variational distribution factorizes as:
q(z) = \prod_{i=1}^M q_i(z_i)
This leads to the coordinate ascent updates (see optimization_theory, natural_gradients):
\ln q_j^*(z_j) = \mathbb{E}_{q_{-j}}[\ln p(x,z)] + \text{const}
Stochastic Variational Inference
For large-scale problems (see stochastic_optimization, monte_carlo_methods), stochastic optimization of the ELBO:
\nabla_{\phi} \text{ELBO} = \mathbb{E}_{q(z;\phi)}[\nabla_{\phi} \ln q(z;\phi)(\ln p(x,z) - \ln q(z;\phi))]
Advanced Implementation
1. Variational Autoencoder
class VariationalAutoencoder:
def __init__(self):
self.components = {
'encoder': ProbabilisticEncoder(
architecture='hierarchical',
distribution='gaussian'
),
'decoder': ProbabilisticDecoder(
architecture='hierarchical',
distribution='bernoulli'
),
'prior': LatentPrior(
type='standard_normal',
learnable=True
)
}
def compute_elbo(
self,
x: torch.Tensor,
n_samples: int = 1
) -> torch.Tensor:
"""Compute ELBO using reparameterization trick"""
# Encode input
mu, log_var = self.components['encoder'](x)
# Sample latent variables
z = self.reparameterize(mu, log_var, n_samples)
# Decode samples
x_recon = self.components['decoder'](z)
# Compute ELBO terms
recon_loss = self.reconstruction_loss(x_recon, x)
kl_loss = self.kl_divergence(mu, log_var)
return recon_loss - kl_loss
2. Normalizing Flow
class NormalizingFlow:
def __init__(self):
self.components = {
'base': BaseDensity(
type='gaussian',
learnable=True
),
'transforms': TransformSequence(
architectures=['planar', 'radial'],
n_layers=10
),
'optimizer': FlowOptimizer(
method='adam',
learning_rate='adaptive'
)
}
def forward(
self,
x: torch.Tensor,
return_logdet: bool = True
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward pass through flow"""
z = x
log_det = 0.0
for transform in self.components['transforms']:
z, ldj = transform(z)
log_det += ldj
if return_logdet:
return z, log_det
return z
3. Amortized Inference
class AmortizedInference:
def __init__(self):
self.components = {
'inference_network': InferenceNetwork(
architecture='residual',
uncertainty='learnable'
),
'generative_model': GenerativeModel(
type='hierarchical',
latent_dims=[64, 32, 16]
),
'training': AmortizedTrainer(
method='importance_weighted',
n_particles=10
)
}
def infer(
self,
x: torch.Tensor,
n_samples: int = 1
) -> Distribution:
"""Perform amortized inference"""
# Get variational parameters
params = self.components['inference_network'](x)
# Sample from variational distribution
q = self.construct_distribution(params)
z = q.rsample(n_samples)
# Compute importance weights
log_weights = (
self.components['generative_model'].log_prob(x, z) -
q.log_prob(z)
)
return self.reweight_distribution(q, log_weights)
Advanced Methods
1. Structured Inference
- graphical_models (see also belief_networks, markov_random_fields)
- Factor graphs
- Message passing (see belief_propagation)
- Structured approximations
- copula_inference (see also multivariate_statistics)
- Dependency modeling
- Multivariate coupling
- Vine copulas
2. Implicit Models
- adversarial_variational_bayes
- GAN-based inference
- Density ratio estimation
- Implicit distributions
- flow_based_models
- Invertible networks
- Change of variables
- Density estimation
3. Sequential Methods
- particle_filtering
- Sequential importance sampling
- Resampling strategies
- Particle smoothing
- variational_sequential_monte_carlo
- Amortized proposals
- Structured resampling
- Flow transport
Applications
1. Probabilistic Programming
- automatic_differentiation
- Reverse mode
- Forward mode
- Mixed mode
- program_synthesis
- Grammar induction
- Program inversion
- Symbolic abstraction
2. Deep Learning
- deep_generative_models
- VAEs
- Flows
- Diffusion models
- bayesian_neural_networks
- Weight uncertainty
- Function-space inference
- Ensemble methods
3. State Space Models
- dynamical_systems
- Continuous dynamics
- Jump processes
- Hybrid systems
- time_series_models
- State estimation
- Parameter learning
- Structure discovery
Research Directions
1. Theoretical Extensions
- optimal_transport
- Wasserstein inference
- Gradient flows
- Metric learning
- information_geometry
- Natural gradients
- Statistical manifolds
- Divergence measures
2. Scalable Methods
- distributed_inference
- Parallel algorithms
- Communication efficiency
- Consensus methods
- neural_inference
- Learned optimizers
- Meta-learning
- Neural architectures
3. Applications
- scientific_computing
- Uncertainty quantification
- Inverse problems
- Model selection
- decision_making
- Policy learning
- Risk assessment
- Active learning
References
- blei_2017 - "Variational Inference: A Review for Statisticians"
- kingma_2014 - "Auto-Encoding Variational Bayes"
- rezende_2015 - "Variational Inference with Normalizing Flows"
- hoffman_2013 - "Stochastic Variational Inference"
See Also
- variational_calculus
- bayesian_inference
- monte_carlo_methods
- optimization_theory
- information_theory
- probabilistic_programming
- deep_learning
Numerical Methods
Optimization Algorithms
- gradient_descent - First-order methods
- conjugate_gradient - Second-order methods
- quasi_newton - Approximate Newton
- trust_region - Trust region methods
Sampling Methods
- importance_sampling - IS techniques
- hamiltonian_mc - HMC sampling
- sequential_mc - SMC methods
- variational_sampling - Variational approaches
Implementation Considerations
- numerical_stability - Stability issues
- convergence_criteria - Convergence checks
- hyperparameter_tuning - Parameter selection
- computational_efficiency - Efficiency concerns
Validation Framework
Quality Metrics
class VariationalMetrics:
"""Quality metrics for variational methods."""
@staticmethod
def compute_kl_divergence(p: np.ndarray, q: np.ndarray) -> float:
"""Compute KL divergence between distributions."""
return np.sum(p * (np.log(p + 1e-10) - np.log(q + 1e-10)))
@staticmethod
def compute_elbo(model: GenerativeModel,
variational_dist: Distribution,
data: np.ndarray) -> float:
"""Compute Evidence Lower BOund."""
return model.expected_log_likelihood(data, variational_dist) - \
model.kl_divergence(variational_dist)
Performance Analysis
- convergence_analysis - Convergence properties
- complexity_analysis - Computational complexity
- accuracy_metrics - Approximation quality
- robustness_tests - Stability testing
Integration Points
Theory Integration
- active_inference - Active inference framework (see also free_energy_principle)
- predictive_coding - Predictive processing (see also hierarchical_inference)
- message_passing - Belief propagation (see also factor_graphs)
- probabilistic_inference - Probabilistic methods (see also bayesian_statistics)
Implementation Links
- optimization_methods - Optimization techniques (see also natural_gradients)
- inference_algorithms - Inference methods (see also monte_carlo_methods)
- sampling_approaches - Sampling strategies (see also mcmc_methods)
- numerical_implementations - Numerical methods (see also numerical_optimization)
Documentation Links
- ../../docs/research/research_documentation_index
- ../../docs/guides/implementation_guides_index
- ../../docs/api/api_documentation_index
- ../../docs/examples/usage_examples_index
References
- jordan_1999 - Introduction to Variational Methods
- wainwright_2008 - Graphical Models
- zhang_2018 - Natural Gradient Methods