зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 20:26:04 +02:00
8.6 KiB
8.6 KiB
| type | id | created | modified | tags | aliases | complexity | processing_priority | semantic_relations | ||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| concept | tensegrity_001 | 2024-03-15 | 2024-03-15 |
|
|
advanced | 1 |
|
Tensegrity
Overview
Tensegrity represents a structural-design principle where components maintain their integrity through a balance of tension and compression forces, increasingly understood through the framework of active inference. This approach reveals how systems minimize free energy through distributed stress patterns and self-organizing stability.
Mathematical Framework
1. Structural Dynamics
Basic equations of tensegrity systems:
\begin{aligned}
& \text{Force Balance:} \\
& \sum_i \mathbf{F}_i = \mathbf{0} \\
& \text{Free Energy:} \\
& F = \mathbb{E}_q[\ln q(s) - \ln p(o,s)] \\
& \text{Structural Stability:} \\
& \dot{\mathbf{x}} = -\nabla_\mathbf{x}F
\end{aligned}
2. Network Topology
Tensegrity network organization:
\begin{aligned}
& \text{Connectivity Matrix:} \\
& C_{ij} = \begin{cases}
1 & \text{if elements } i,j \text{ connected} \\
0 & \text{otherwise}
\end{cases} \\
& \text{Stress Distribution:} \\
& \sigma_{ij} = k_{ij}(l_{ij} - l_{ij}^0) \\
& \text{Energy Density:} \\
& \mathcal{E} = \frac{1}{2V}\sum_{ij} k_{ij}(l_{ij} - l_{ij}^0)^2
\end{aligned}
3. Geometric Principles
Synergetic geometry:
\begin{aligned}
& \text{Geodesic Relations:} \\
& R = \frac{l}{2\sin(\pi/n)} \\
& \text{Frequency:} \\
& f = \frac{V + F - 2}{E} \\
& \text{Dihedral Angle:} \\
& \cos\theta = -\frac{1}{3}
\end{aligned}
Implementation Framework
1. Tensegrity Simulator
class TensegritySystem:
"""Simulates tensegrity structures using active inference"""
def __init__(self,
structure_params: Dict[str, float],
network_params: Dict[str, float],
inference_params: Dict[str, float]):
self.structure = structure_params
self.network = network_params
self.inference = inference_params
self.initialize_system()
def simulate_dynamics(self,
initial_state: Dict,
forces: Dict,
time_span: float,
dt: float) -> Dict:
"""Simulate structural dynamics"""
# Initialize state variables
state = initial_state.copy()
free_energy = []
configurations = []
# Time evolution
for t in np.arange(0, time_span, dt):
# Compute free energy
F = self.compute_free_energy(state)
# Update configuration
dx = self.compute_structural_dynamics(state, F)
state['positions'] += dx * dt
# Update forces
state = self.update_forces(state)
# Apply external forces
state = self.apply_external_forces(
state, forces)
# Store trajectories
free_energy.append(F)
configurations.append(state.copy())
return {
'configurations': configurations,
'free_energy': free_energy
}
def compute_free_energy(self,
state: Dict) -> float:
"""Compute structural free energy"""
# Elastic energy
E = self.compute_elastic_energy(state)
# Entropic term
S = self.compute_entropy(state)
# Geometric term
G = self.compute_geometric_term(state)
# Free energy
F = E - S + G
return F
2. Network Analyzer
class TensegrityNetwork:
"""Analyzes tensegrity network properties"""
def __init__(self):
self.topology = NetworkTopology()
self.stability = StabilityAnalysis()
self.resilience = ResilienceAnalysis()
def analyze_network(self,
structure: Graph,
forces: np.ndarray,
params: Dict) -> Dict:
"""Analyze network properties"""
# Topological analysis
topology = self.topology.analyze(structure)
# Stability analysis
stability = self.stability.analyze(
structure, forces)
# Resilience analysis
resilience = self.resilience.analyze(
structure, forces)
return {
'topology': topology,
'stability': stability,
'resilience': resilience
}
3. Geometric Optimizer
class TensegrityOptimizer:
"""Optimizes tensegrity geometry"""
def __init__(self):
self.geometry = GeometricAnalysis()
self.forces = ForceOptimization()
self.efficiency = StructuralEfficiency()
def optimize_structure(self,
initial_geometry: Dict,
constraints: Dict,
objectives: Dict) -> Dict:
"""Optimize tensegrity structure"""
# Geometric optimization
geometry = self.geometry.optimize(
initial_geometry, constraints)
# Force distribution
forces = self.forces.optimize(
geometry, constraints)
# Efficiency analysis
efficiency = self.efficiency.analyze(
geometry, forces)
return {
'geometry': geometry,
'forces': forces,
'efficiency': efficiency
}
Advanced Concepts
1. Structural Stability
\begin{aligned}
& \text{Stability Matrix:} \\
& K_{ij} = \frac{\partial^2 V}{\partial x_i\partial x_j} \\
& \text{Modal Analysis:} \\
& (\mathbf{K} - \omega^2\mathbf{M})\mathbf{u} = \mathbf{0} \\
& \text{Critical Load:} \\
& P_{cr} = \min_i \lambda_i(\mathbf{K})
\end{aligned}
2. Network Resilience
\begin{aligned}
& \text{Redundancy Factor:} \\
& R = \frac{E}{V-1} - 1 \\
& \text{Load Distribution:} \\
& \phi_i = \frac{F_i}{\sum_j F_j} \\
& \text{Failure Probability:} \\
& P_f = P(F > F_{cr})
\end{aligned}
3. Synergetic Principles
\begin{aligned}
& \text{Vector Equilibrium:} \\
& \sum_i \mathbf{r}_i = \mathbf{0} \\
& \text{Jitterbug Transform:} \\
& V_t = V_0\cos^3(\omega t) \\
& \text{Closest Packing:} \\
& \eta = \frac{\pi\sqrt{2}}{6}
\end{aligned}
Applications
1. Architecture
- Structural design
- Sustainable buildings
- Adaptive structures
2. Engineering
- Aerospace structures
- Deployable systems
- Robotics
3. Biomechanics
- Cellular structures
- Tissue mechanics
- Prosthetic design
Advanced Mathematical Extensions
1. Differential Geometry
\begin{aligned}
& \text{Curvature:} \\
& \kappa = \frac{|y''|}{(1 + y'^2)^{3/2}} \\
& \text{Geodesic Equation:} \\
& \ddot{x}^\mu + \Gamma^\mu_{\alpha\beta}\dot{x}^\alpha\dot{x}^\beta = 0 \\
& \text{Minimal Surface:} \\
& H = \frac{1}{2}(k_1 + k_2) = 0
\end{aligned}
2. Information Theory
\begin{aligned}
& \text{Structural Information:} \\
& I(X;Y) = H(X) - H(X|Y) \\
& \text{Network Complexity:} \\
& C = \sum_i p_i\log(1/p_i) \\
& \text{Pattern Formation:} \\
& \dot{S} = -\sum_i \frac{\partial J_i}{\partial x_i}
\end{aligned}
3. Field Theory
\begin{aligned}
& \text{Strain Field:} \\
& \epsilon_{ij} = \frac{1}{2}(\partial_iu_j + \partial_ju_i) \\
& \text{Stress Field:} \\
& \sigma_{ij} = C_{ijkl}\epsilon_{kl} \\
& \text{Energy Density:} \\
& \mathcal{E} = \frac{1}{2}\sigma_{ij}\epsilon_{ij}
\end{aligned}
Implementation Considerations
1. Numerical Methods
- Finite element analysis
- Dynamic relaxation
- Optimization algorithms
2. Data Structures
- Mesh representations
- Force networks
- Geometric graphs
3. Computational Efficiency
- Parallel computation
- GPU acceleration
- Adaptive methods
References
- fuller_1975 - "Synergetics: Explorations in the Geometry of Thinking"
- motro_2003 - "Tensegrity: Structural Systems for the Future"
- friston_2019 - "A Free Energy Principle for a Particular Physics"
- ingber_1998 - "Architecture of Life"