зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
7.8 KiB
7.8 KiB
| type | id | created | modified | tags | aliases | complexity | processing_priority | semantic_relations | |||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| concept | augmented_reality_001 | 2024-03-15 | 2024-03-15 |
|
|
advanced | 1 |
|
Augmented Reality
Overview
Augmented Reality (AR) represents the seamless integration of digital information with the physical world, increasingly understood through the framework of active inference. This approach reveals how AR systems minimize uncertainty in spatial registration, user interaction, and environmental understanding.
Mathematical Framework
1. Spatial Registration
Basic equations of AR registration:
\begin{aligned}
& \text{Registration Error:} \\
& E = ||T_{physical} - T_{virtual}|| \\
& \text{Free Energy:} \\
& F = \mathbb{E}_q[\ln q(s) - \ln p(o,s)] \\
& \text{Pose Estimation:} \\
& \dot{\mu} = -\nabla_\mu F
\end{aligned}
2. Visual Processing
Computer vision and tracking:
\begin{aligned}
& \text{Feature Detection:} \\
& I(x,y) * \nabla^2G(x,y,\sigma) \\
& \text{Optical Flow:} \\
& \frac{\partial I}{\partial t} + \nabla I \cdot \mathbf{v} = 0 \\
& \text{SLAM Update:} \\
& p(x_t|z_{1:t}) \propto p(z_t|x_t)p(x_t|z_{1:t-1})
\end{aligned}
3. Interaction Dynamics
User interaction modeling:
\begin{aligned}
& \text{Interaction Field:} \\
& \phi(x,t) = \sum_i w_i K(x-x_i) \\
& \text{Attention Model:} \\
& A(x) = \frac{\exp(-\beta V(x))}{\int \exp(-\beta V(y))dy} \\
& \text{Response Dynamics:} \\
& \tau\dot{r} = -r + f(I) + \eta(t)
\end{aligned}
Implementation Framework
1. AR Engine
class AugmentedReality:
"""Manages AR system using active inference"""
def __init__(self,
vision_params: Dict[str, float],
tracking_params: Dict[str, float],
inference_params: Dict[str, float]):
self.vision = vision_params
self.tracking = tracking_params
self.inference = inference_params
self.initialize_system()
def process_frame(self,
camera_input: np.ndarray,
sensors: Dict,
context: Dict) -> Dict:
"""Process AR frame"""
# Initialize state
state = self.initialize_state(camera_input)
# Compute free energy
F = self.compute_free_energy(state)
# Update pose estimation
pose = self.update_pose(state, F)
# Process visual features
features = self.process_features(camera_input)
# Update tracking
tracking = self.update_tracking(features, sensors)
# Generate augmentations
augmentations = self.generate_augmentations(
pose, tracking, context)
return {
'pose': pose,
'tracking': tracking,
'augmentations': augmentations
}
def compute_free_energy(self,
state: Dict) -> float:
"""Compute AR free energy"""
# Visual error
E_visual = self.compute_visual_error(state)
# Tracking error
E_tracking = self.compute_tracking_error(state)
# Prior term
P = self.compute_prior_term(state)
# Free energy
F = E_visual + E_tracking + P
return F
2. Visual Processor
class ARVision:
"""Processes visual information for AR"""
def __init__(self):
self.feature_detector = FeatureDetector()
self.tracker = VisualTracker()
self.slam = SLAMSystem()
def process_vision(self,
frame: np.ndarray,
state: Dict) -> Dict:
"""Process visual information"""
# Detect features
features = self.feature_detector.detect(frame)
# Track features
tracking = self.tracker.update(features)
# Update SLAM
mapping = self.slam.update(tracking)
return {
'features': features,
'tracking': tracking,
'mapping': mapping
}
3. Interaction Handler
class ARInteraction:
"""Manages AR interactions"""
def __init__(self):
self.gesture = GestureRecognition()
self.physics = InteractionPhysics()
self.feedback = HapticFeedback()
def process_interaction(self,
user_input: Dict,
ar_state: Dict) -> Dict:
"""Process user interactions"""
# Recognize gestures
gestures = self.gesture.recognize(user_input)
# Compute physics
physics = self.physics.simulate(
gestures, ar_state)
# Generate feedback
feedback = self.feedback.generate(
physics)
return {
'gestures': gestures,
'physics': physics,
'feedback': feedback
}
Advanced Concepts
1. Spatial Understanding
\begin{aligned}
& \text{Scene Graph:} \\
& G = (V,E,\phi) \\
& \text{Spatial Relations:} \\
& R(x,y) = f(d(x,y), \theta(x,y)) \\
& \text{Semantic Mapping:} \\
& p(s|x) = \frac{p(x|s)p(s)}{p(x)}
\end{aligned}
2. User Modeling
\begin{aligned}
& \text{Attention Model:} \\
& p(a|x) = \sigma(-\beta F(a,x)) \\
& \text{Learning Rate:} \\
& \eta(t) = \eta_0(1 + \alpha t)^{-\beta} \\
& \text{Performance:} \\
& P(t) = P_\infty(1 - e^{-t/\tau})
\end{aligned}
3. Display Optimization
\begin{aligned}
& \text{Rendering Quality:} \\
& Q = f(d, v, l) \\
& \text{Latency Compensation:} \\
& x_{pred} = x + v\Delta t + \frac{1}{2}a\Delta t^2 \\
& \text{Focus Depth:} \\
& \frac{1}{F} = \frac{1}{u} + \frac{1}{v}
\end{aligned}
Applications
1. Industrial AR
- Maintenance
- Assembly
- Quality control
2. Medical AR
- Surgical navigation
- Medical training
- Patient monitoring
3. Consumer AR
- Navigation
- Education
- Entertainment
Advanced Mathematical Extensions
1. Computer Vision
\begin{aligned}
& \text{Feature Detection:} \\
& \text{det}(H) = \lambda_1\lambda_2 \\
& \text{Pose Estimation:} \\
& \min_R \sum_i ||x_i - RX_i||^2 \\
& \text{Bundle Adjustment:} \\
& \min_{c,p} \sum_{i,j} ||x_{ij} - \pi(c_i, p_j)||^2
\end{aligned}
2. Information Theory
\begin{aligned}
& \text{Visual Information:} \\
& I(X;Y) = H(X) - H(X|Y) \\
& \text{Channel Capacity:} \\
& C = \max_{p(x)} I(X;Y) \\
& \text{Rate Distortion:} \\
& R(D) = \min_{p(y|x): \mathbb{E}[d(X,Y)]\leq D} I(X;Y)
\end{aligned}
3. Control Theory
\begin{aligned}
& \text{Tracking Control:} \\
& \dot{e} + Ke = 0 \\
& \text{Optimal Control:} \\
& J = \int_0^T (x^TQx + u^TRu)dt \\
& \text{Adaptive Control:} \\
& \dot{\hat{\theta}} = -\gamma e\phi
\end{aligned}
Implementation Considerations
1. Hardware Integration
- Displays
- Sensors
- Processing units
2. Software Architecture
- Real-time processing
- Rendering pipeline
- Sensor fusion
3. User Experience
- Interface design
- Interaction models
- Comfort and safety
References
- azuma_1997 - "A Survey of Augmented Reality"
- friston_2019 - "A Free Energy Principle for a Particular Physics"
- billinghurst_2015 - "Spatial Interfaces"
- hartley_2004 - "Multiple View Geometry"