Daniel Ari Friedman 4fcb46908d Various Updates
2025-02-12 19:26:24 -08:00

8.9 KiB

type id created modified tags aliases complexity processing_priority semantic_relations
concept spatial_web_001 2024-03-15 2024-03-15
spatial-web
active-inference
ar-vr
logistics
complex-systems
web3d
spatial-computing
internet-of-spaces
advanced 1
type links
foundation
active_inference
free_energy_principle
spatial_computing
type links
implements
augmented_reality
virtual_reality
spatial_logistics
type links
relates
network_theory
information_geometry
complex_systems

Spatial Web

Overview

The Spatial Web represents the convergence of physical and digital realities through spatial computing, augmented/virtual reality (AR/VR), and intelligent logistics, all unified through the framework of active inference. This paradigm enables systems to minimize uncertainty while navigating and manipulating both physical and virtual spaces.

Mathematical Framework

1. Spatial Information

Basic equations of spatial information processing:

\begin{aligned}
& \text{Spatial Free Energy:} \\
& F = \mathbb{E}_q[\ln q(s) - \ln p(o,s)] \\
& \text{Spatial Inference:} \\
& \dot{\mu} = -\nabla_\mu F \\
& \text{Information Field:} \\
& I(x,t) = -\nabla_x\ln p(x,t)
\end{aligned}

2. Spatial Dynamics

Equations governing spatial interactions:

\begin{aligned}
& \text{Field Dynamics:} \\
& \frac{\partial\phi}{\partial t} = D\nabla^2\phi + f(\phi) - \nabla_\phi F \\
& \text{Flow Field:} \\
& \mathbf{v}(x,t) = -D\nabla\ln p(x,t) \\
& \text{Interaction Potential:} \\
& V(x,y) = \sum_i w_i\phi_i(|x-y|)
\end{aligned}

3. Network Structure

Spatial network organization:

\begin{aligned}
& \text{Connectivity:} \\
& A_{ij} = h(d_{ij}, w_{ij}) \\
& \text{Spatial Embedding:} \\
& E = \sum_{ij} A_{ij}||x_i - x_j||^2 \\
& \text{Flow Conservation:} \\
& \sum_j J_{ij} = 0
\end{aligned}

Implementation Framework

1. Spatial Engine

class SpatialWeb:
    """Manages spatial web interactions using active inference"""
    def __init__(self,
                 spatial_params: Dict[str, float],
                 network_params: Dict[str, float],
                 inference_params: Dict[str, float]):
        self.spatial = spatial_params
        self.network = network_params
        self.inference = inference_params
        self.initialize_system()
        
    def process_spatial_data(self,
                           observations: Dict,
                           context: Dict,
                           time_span: float,
                           dt: float) -> Dict:
        """Process spatial information"""
        # Initialize state variables
        state = self.initialize_state(observations)
        free_energy = []
        spatial_info = []
        
        # Time evolution
        for t in np.arange(0, time_span, dt):
            # Compute free energy
            F = self.compute_free_energy(state)
            
            # Update spatial representation
            ds = self.compute_spatial_dynamics(state, F)
            state['spatial'] += ds * dt
            
            # Update network structure
            state = self.update_network(state)
            
            # Context interaction
            state = self.update_context_interaction(
                state, context)
                
            # Store trajectories
            free_energy.append(F)
            spatial_info.append(state['spatial'].copy())
            
        return {
            'spatial_info': spatial_info,
            'free_energy': free_energy
        }
        
    def compute_free_energy(self,
                           state: Dict) -> float:
        """Compute spatial free energy"""
        # Energy term
        E = self.compute_energy(state)
        
        # Entropy term
        S = self.compute_entropy(state)
        
        # Spatial term
        Sp = self.compute_spatial_term(state)
        
        # Free energy
        F = E - S + Sp
        
        return F

2. AR/VR Integration

class SpatialARVR:
    """Manages AR/VR integration in spatial web"""
    def __init__(self):
        self.rendering = SpatialRendering()
        self.interaction = UserInteraction()
        self.physics = PhysicsEngine()
        
    def process_mixed_reality(self,
                            physical_state: Dict,
                            virtual_state: Dict,
                            user_input: Dict) -> Dict:
        """Process mixed reality interactions"""
        # Render spatial environment
        render_state = self.rendering.process(
            physical_state, virtual_state)
            
        # Handle user interactions
        interaction_state = self.interaction.process(
            render_state, user_input)
            
        # Update physics
        physics_state = self.physics.update(
            interaction_state)
            
        return {
            'render': render_state,
            'interaction': interaction_state,
            'physics': physics_state
        }

3. Logistics Optimizer

class SpatialLogistics:
    """Optimizes spatial logistics using active inference"""
    def __init__(self):
        self.routing = SpatialRouting()
        self.scheduling = TimeOptimization()
        self.resources = ResourceAllocation()
        
    def optimize_logistics(self,
                         network: Graph,
                         demands: Dict,
                         constraints: Dict) -> Dict:
        """Optimize logistics operations"""
        # Compute optimal routes
        routes = self.routing.optimize(
            network, demands)
            
        # Optimize scheduling
        schedule = self.scheduling.optimize(
            routes, constraints)
            
        # Allocate resources
        allocation = self.resources.optimize(
            routes, schedule)
            
        return {
            'routes': routes,
            'schedule': schedule,
            'allocation': allocation
        }

Advanced Concepts

1. Spatial Intelligence

\begin{aligned}
& \text{Spatial Memory:} \\
& M(x,t) = \int_0^t K(x,t-\tau)I(\tau)d\tau \\
& \text{Attention Field:} \\
& A(x) = \frac{\exp(-\beta V(x))}{\int \exp(-\beta V(y))dy} \\
& \text{Decision Making:} \\
& P(a|x) = \sigma(-\beta F(a,x))
\end{aligned}

2. Mixed Reality

\begin{aligned}
& \text{Reality-Virtuality Continuum:} \\
& \phi_{mixed} = \alpha\phi_{physical} + (1-\alpha)\phi_{virtual} \\
& \text{Registration Error:} \\
& E = ||T_{physical} - T_{virtual}|| \\
& \text{Interaction Dynamics:} \\
& \frac{d\mathbf{x}}{dt} = f_{physical}(\mathbf{x}) + f_{virtual}(\mathbf{x})
\end{aligned}

3. Spatial Optimization

\begin{aligned}
& \text{Path Planning:} \\
& J = \int_0^T L(\mathbf{x},\dot{\mathbf{x}},t)dt \\
& \text{Resource Allocation:} \\
& \min_{\mathbf{x}} \sum_i c_i(\mathbf{x}_i) \\
& \text{Network Flow:} \\
& \max_{\mathbf{f}} \sum_{ij} f_{ij}b_{ij}
\end{aligned}

Applications

1. Spatial Computing

  • Mixed reality environments
  • Spatial interfaces
  • Environmental mapping

2. AR/VR Systems

  • Immersive experiences
  • Spatial interaction
  • Virtual collaboration

3. Smart Logistics

  • Route optimization
  • Resource allocation
  • Supply chain management

Advanced Mathematical Extensions

1. Information Geometry

\begin{aligned}
& \text{Fisher Metric:} \\
& g_{ij} = \mathbb{E}\left[\frac{\partial \ln p}{\partial \theta_i}\frac{\partial \ln p}{\partial \theta_j}\right] \\
& \text{Geodesic Flow:} \\
& \ddot{\theta}^i + \Gamma^i_{jk}\dot{\theta}^j\dot{\theta}^k = 0 \\
& \text{Information Distance:} \\
& D(p||q) = \int \sqrt{g_{ij}d\theta^id\theta^j}
\end{aligned}

2. Field Theory

\begin{aligned}
& \text{Action Functional:} \\
& S[\phi] = \int d^4x \mathcal{L}(\phi,\partial_\mu\phi) \\
& \text{Field Equations:} \\
& \frac{\delta S}{\delta\phi} = 0 \\
& \text{Conservation Laws:} \\
& \partial_\mu T^{\mu\nu} = 0
\end{aligned}

3. Network Theory

\begin{aligned}
& \text{Spatial Networks:} \\
& P(d_{ij}) \sim d_{ij}^{-\alpha} \\
& \text{Flow Networks:} \\
& \nabla \cdot \mathbf{J} = 0 \\
& \text{Optimization:} \\
& \min_{\{x_i\}} \sum_{ij} w_{ij}d(x_i,x_j)
\end{aligned}

Implementation Considerations

1. Technical Infrastructure

  • Spatial computing platforms
  • AR/VR hardware
  • Network infrastructure

2. Data Management

  • Spatial databases
  • Real-time processing
  • Distributed storage

3. System Integration

  • API design
  • Protocol standards
  • Security measures

References

See Also