зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
8.9 KiB
8.9 KiB
| type | id | created | modified | tags | aliases | complexity | processing_priority | semantic_relations | ||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| concept | spatial_web_001 | 2024-03-15 | 2024-03-15 |
|
|
advanced | 1 |
|
Spatial Web
Overview
The Spatial Web represents the convergence of physical and digital realities through spatial computing, augmented/virtual reality (AR/VR), and intelligent logistics, all unified through the framework of active inference. This paradigm enables systems to minimize uncertainty while navigating and manipulating both physical and virtual spaces.
Mathematical Framework
1. Spatial Information
Basic equations of spatial information processing:
\begin{aligned}
& \text{Spatial Free Energy:} \\
& F = \mathbb{E}_q[\ln q(s) - \ln p(o,s)] \\
& \text{Spatial Inference:} \\
& \dot{\mu} = -\nabla_\mu F \\
& \text{Information Field:} \\
& I(x,t) = -\nabla_x\ln p(x,t)
\end{aligned}
2. Spatial Dynamics
Equations governing spatial interactions:
\begin{aligned}
& \text{Field Dynamics:} \\
& \frac{\partial\phi}{\partial t} = D\nabla^2\phi + f(\phi) - \nabla_\phi F \\
& \text{Flow Field:} \\
& \mathbf{v}(x,t) = -D\nabla\ln p(x,t) \\
& \text{Interaction Potential:} \\
& V(x,y) = \sum_i w_i\phi_i(|x-y|)
\end{aligned}
3. Network Structure
Spatial network organization:
\begin{aligned}
& \text{Connectivity:} \\
& A_{ij} = h(d_{ij}, w_{ij}) \\
& \text{Spatial Embedding:} \\
& E = \sum_{ij} A_{ij}||x_i - x_j||^2 \\
& \text{Flow Conservation:} \\
& \sum_j J_{ij} = 0
\end{aligned}
Implementation Framework
1. Spatial Engine
class SpatialWeb:
"""Manages spatial web interactions using active inference"""
def __init__(self,
spatial_params: Dict[str, float],
network_params: Dict[str, float],
inference_params: Dict[str, float]):
self.spatial = spatial_params
self.network = network_params
self.inference = inference_params
self.initialize_system()
def process_spatial_data(self,
observations: Dict,
context: Dict,
time_span: float,
dt: float) -> Dict:
"""Process spatial information"""
# Initialize state variables
state = self.initialize_state(observations)
free_energy = []
spatial_info = []
# Time evolution
for t in np.arange(0, time_span, dt):
# Compute free energy
F = self.compute_free_energy(state)
# Update spatial representation
ds = self.compute_spatial_dynamics(state, F)
state['spatial'] += ds * dt
# Update network structure
state = self.update_network(state)
# Context interaction
state = self.update_context_interaction(
state, context)
# Store trajectories
free_energy.append(F)
spatial_info.append(state['spatial'].copy())
return {
'spatial_info': spatial_info,
'free_energy': free_energy
}
def compute_free_energy(self,
state: Dict) -> float:
"""Compute spatial free energy"""
# Energy term
E = self.compute_energy(state)
# Entropy term
S = self.compute_entropy(state)
# Spatial term
Sp = self.compute_spatial_term(state)
# Free energy
F = E - S + Sp
return F
2. AR/VR Integration
class SpatialARVR:
"""Manages AR/VR integration in spatial web"""
def __init__(self):
self.rendering = SpatialRendering()
self.interaction = UserInteraction()
self.physics = PhysicsEngine()
def process_mixed_reality(self,
physical_state: Dict,
virtual_state: Dict,
user_input: Dict) -> Dict:
"""Process mixed reality interactions"""
# Render spatial environment
render_state = self.rendering.process(
physical_state, virtual_state)
# Handle user interactions
interaction_state = self.interaction.process(
render_state, user_input)
# Update physics
physics_state = self.physics.update(
interaction_state)
return {
'render': render_state,
'interaction': interaction_state,
'physics': physics_state
}
3. Logistics Optimizer
class SpatialLogistics:
"""Optimizes spatial logistics using active inference"""
def __init__(self):
self.routing = SpatialRouting()
self.scheduling = TimeOptimization()
self.resources = ResourceAllocation()
def optimize_logistics(self,
network: Graph,
demands: Dict,
constraints: Dict) -> Dict:
"""Optimize logistics operations"""
# Compute optimal routes
routes = self.routing.optimize(
network, demands)
# Optimize scheduling
schedule = self.scheduling.optimize(
routes, constraints)
# Allocate resources
allocation = self.resources.optimize(
routes, schedule)
return {
'routes': routes,
'schedule': schedule,
'allocation': allocation
}
Advanced Concepts
1. Spatial Intelligence
\begin{aligned}
& \text{Spatial Memory:} \\
& M(x,t) = \int_0^t K(x,t-\tau)I(\tau)d\tau \\
& \text{Attention Field:} \\
& A(x) = \frac{\exp(-\beta V(x))}{\int \exp(-\beta V(y))dy} \\
& \text{Decision Making:} \\
& P(a|x) = \sigma(-\beta F(a,x))
\end{aligned}
2. Mixed Reality
\begin{aligned}
& \text{Reality-Virtuality Continuum:} \\
& \phi_{mixed} = \alpha\phi_{physical} + (1-\alpha)\phi_{virtual} \\
& \text{Registration Error:} \\
& E = ||T_{physical} - T_{virtual}|| \\
& \text{Interaction Dynamics:} \\
& \frac{d\mathbf{x}}{dt} = f_{physical}(\mathbf{x}) + f_{virtual}(\mathbf{x})
\end{aligned}
3. Spatial Optimization
\begin{aligned}
& \text{Path Planning:} \\
& J = \int_0^T L(\mathbf{x},\dot{\mathbf{x}},t)dt \\
& \text{Resource Allocation:} \\
& \min_{\mathbf{x}} \sum_i c_i(\mathbf{x}_i) \\
& \text{Network Flow:} \\
& \max_{\mathbf{f}} \sum_{ij} f_{ij}b_{ij}
\end{aligned}
Applications
1. Spatial Computing
- Mixed reality environments
- Spatial interfaces
- Environmental mapping
2. AR/VR Systems
- Immersive experiences
- Spatial interaction
- Virtual collaboration
3. Smart Logistics
- Route optimization
- Resource allocation
- Supply chain management
Advanced Mathematical Extensions
1. Information Geometry
\begin{aligned}
& \text{Fisher Metric:} \\
& g_{ij} = \mathbb{E}\left[\frac{\partial \ln p}{\partial \theta_i}\frac{\partial \ln p}{\partial \theta_j}\right] \\
& \text{Geodesic Flow:} \\
& \ddot{\theta}^i + \Gamma^i_{jk}\dot{\theta}^j\dot{\theta}^k = 0 \\
& \text{Information Distance:} \\
& D(p||q) = \int \sqrt{g_{ij}d\theta^id\theta^j}
\end{aligned}
2. Field Theory
\begin{aligned}
& \text{Action Functional:} \\
& S[\phi] = \int d^4x \mathcal{L}(\phi,\partial_\mu\phi) \\
& \text{Field Equations:} \\
& \frac{\delta S}{\delta\phi} = 0 \\
& \text{Conservation Laws:} \\
& \partial_\mu T^{\mu\nu} = 0
\end{aligned}
3. Network Theory
\begin{aligned}
& \text{Spatial Networks:} \\
& P(d_{ij}) \sim d_{ij}^{-\alpha} \\
& \text{Flow Networks:} \\
& \nabla \cdot \mathbf{J} = 0 \\
& \text{Optimization:} \\
& \min_{\{x_i\}} \sum_{ij} w_{ij}d(x_i,x_j)
\end{aligned}
Implementation Considerations
1. Technical Infrastructure
- Spatial computing platforms
- AR/VR hardware
- Network infrastructure
2. Data Management
- Spatial databases
- Real-time processing
- Distributed storage
3. System Integration
- API design
- Protocol standards
- Security measures
References
- friston_2019 - "A Free Energy Principle for a Particular Physics"
- billinghurst_2015 - "Spatial Interfaces"
- tompkins_2016 - "Warehouse Management"
- amari_2016 - "Information Geometry"