зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-30 20:56:04 +02:00 
			
		
		
		
	
		
			
				
	
	
	
		
			6.2 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			6.2 KiB
		
	
	
	
	
	
	
	
AI Validation Framework
title: AI Validation Framework type: guide status: stable created: 2024-02-06 tags:
- validation
- quality
- ai
- metrics complexity: advanced processing_priority: 1 semantic_relations:
- type: implements links: machine_readability
- type: extends links: validation_framework
Overview
This guide defines comprehensive validation and quality assurance frameworks for AI-oriented documentation and knowledge management.
Validation Framework
Core Metrics
# @core_metrics
validation_metrics = {
    "documentation": {
        "completeness": float,     # Coverage of required sections
        "consistency": float,      # Internal consistency
        "coherence": float,        # Logical flow
        "machine_readability": float  # AI processing score
    },
    "knowledge_graph": {
        "connectivity": float,     # Graph connectivity
        "coverage": float,         # Concept coverage
        "density": float,          # Relationship density
        "quality": float          # Overall quality score
    },
    "embeddings": {
        "coverage": float,         # Embedding coverage
        "discrimination": float,   # Discriminative power
        "clustering": float,       # Cluster quality
        "stability": float        # Embedding stability
    }
}
Quality Thresholds
quality_thresholds:
  critical:
    completeness: 1.0
    consistency: 1.0
    machine_readability: 1.0
  standard:
    completeness: 0.9
    consistency: 0.9
    machine_readability: 0.9
  minimal:
    completeness: 0.6
    consistency: 0.6
    machine_readability: 0.6
Validation Rules
Documentation Validation
# @documentation_validation
def validate_documentation(doc: Document) -> ValidationResult:
    """
    Validate documentation quality
    
    Validation steps:
    1. Check structure completeness
    2. Verify metadata consistency
    3. Validate semantic markup
    4. Assess machine readability
    5. Verify link integrity
    """
    pass
Knowledge Graph Validation
# @graph_validation
def validate_knowledge_graph(graph: KnowledgeGraph) -> ValidationResult:
    """
    Validate knowledge graph quality
    
    Validation steps:
    1. Check graph connectivity
    2. Verify relationship consistency
    3. Validate node properties
    4. Assess coverage completeness
    """
    pass
Embedding Validation
# @embedding_validation
def validate_embeddings(embeddings: dict) -> ValidationResult:
    """
    Validate embedding quality
    
    Validation steps:
    1. Check dimensionality
    2. Verify normalization
    3. Assess discrimination
    4. Validate stability
    """
    pass
Quality Assurance
Automated Checks
# @automated_qa
class QualityAssurance:
    def check_documentation(self):
        """Documentation quality checks"""
        pass
    
    def check_knowledge_graph(self):
        """Knowledge graph quality checks"""
        pass
    
    def check_embeddings(self):
        """Embedding quality checks"""
        pass
Continuous Validation
# @continuous_validation
def continuous_validation_pipeline():
    """
    Continuous validation pipeline
    
    Steps:
    1. Monitor changes
    2. Trigger validations
    3. Generate reports
    4. Update metrics
    """
    pass
Processing Pipeline
Validation Flow
graph TD
    A[Input] --> B[Structure Validation]
    B --> C[Content Validation]
    C --> D[Semantic Validation]
    D --> E[Graph Validation]
    E --> F[Quality Report]
Quality Monitoring
graph LR
    A[Changes] --> B[Validation]
    B --> C[Analysis]
    C --> D[Reporting]
    D --> E[Improvement]
    E --> A
Integration Points
Documentation Integration
# @documentation_integration
class DocumentationValidator:
    def validate(self, doc: Document) -> ValidationResult:
        """
        Validate documentation
        
        Steps:
        1. Structure check
        2. Content check
        3. Link check
        4. Quality assessment
        """
        pass
Knowledge Graph Integration
# @graph_integration
class GraphValidator:
    def validate(self, graph: KnowledgeGraph) -> ValidationResult:
        """
        Validate knowledge graph
        
        Steps:
        1. Node validation
        2. Edge validation
        3. Property validation
        4. Consistency check
        """
        pass
Reporting Framework
Quality Reports
# @quality_reporting
def generate_quality_report() -> Report:
    """
    Generate comprehensive quality report
    
    Sections:
    1. Overall metrics
    2. Detailed analysis
    3. Issue identification
    4. Improvement suggestions
    """
    pass
Metric Tracking
# @metric_tracking
def track_metrics(metrics: dict):
    """
    Track quality metrics over time
    
    Features:
    1. Trend analysis
    2. Regression detection
    3. Progress monitoring
    4. Alert generation
    """
    pass
Improvement Framework
Issue Resolution
# @issue_resolution
def resolve_issues(issues: list) -> ResolutionPlan:
    """
    Generate issue resolution plan
    
    Steps:
    1. Prioritize issues
    2. Generate solutions
    3. Plan implementation
    4. Track resolution
    """
    pass
Quality Enhancement
# @quality_enhancement
def enhance_quality(target: str) -> EnhancementPlan:
    """
    Generate quality enhancement plan
    
    Steps:
    1. Identify opportunities
    2. Propose improvements
    3. Plan implementation
    4. Track progress
    """
    pass
Best Practices
Validation Guidelines
- 
Regular Validation - Automated daily checks
- Weekly comprehensive validation
- Monthly quality reviews
 
- 
Quality Monitoring - Real-time metric tracking
- Trend analysis
- Regression detection
 
- 
Continuous Improvement - Issue tracking
- Enhancement planning
- Progress monitoring
 
