зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 21:26:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			333 строки
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			333 строки
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Error Propagation Implementation
 | |
| type: implementation_guide
 | |
| status: stable
 | |
| created: 2024-02-12
 | |
| tags:
 | |
|   - implementation
 | |
|   - predictive-processing
 | |
|   - error-handling
 | |
| semantic_relations:
 | |
|   - type: implements
 | |
|     links: [[../../learning_paths/predictive_processing]]
 | |
|   - type: relates
 | |
|     links:
 | |
|       - [[predictive_network]]
 | |
|       - [[precision_mechanisms]]
 | |
| ---
 | |
| 
 | |
| # Error Propagation Implementation
 | |
| 
 | |
| ## Overview
 | |
| 
 | |
| This guide details the implementation of error propagation mechanisms in predictive processing networks, focusing on both forward and backward message passing.
 | |
| 
 | |
| ## Core Mechanisms
 | |
| 
 | |
| ### Error Types
 | |
| ```python
 | |
| class PredictionError:
 | |
|     def __init__(self, 
 | |
|                  predicted: torch.Tensor,
 | |
|                  actual: torch.Tensor,
 | |
|                  precision: torch.Tensor):
 | |
|         """Initialize prediction error.
 | |
|         
 | |
|         Args:
 | |
|             predicted: Predicted values
 | |
|             actual: Actual values
 | |
|             precision: Precision (inverse variance)
 | |
|         """
 | |
|         self.predicted = predicted
 | |
|         self.actual = actual
 | |
|         self.precision = precision
 | |
|         self.error = self._compute_error()
 | |
|         
 | |
|     def _compute_error(self) -> torch.Tensor:
 | |
|         """Compute weighted prediction error."""
 | |
|         raw_error = self.actual - self.predicted
 | |
|         return raw_error * self.precision
 | |
| ```
 | |
| 
 | |
| ### Message Passing
 | |
| ```python
 | |
| class MessagePassing:
 | |
|     def __init__(self, network: PredictiveNetwork):
 | |
|         """Initialize message passing.
 | |
|         
 | |
|         Args:
 | |
|             network: Predictive network instance
 | |
|         """
 | |
|         self.network = network
 | |
|         self.messages_up = []
 | |
|         self.messages_down = []
 | |
|     
 | |
|     def forward_messages(self, 
 | |
|                         input_data: torch.Tensor) -> List[PredictionError]:
 | |
|         """Compute forward (bottom-up) messages.
 | |
|         
 | |
|         Args:
 | |
|             input_data: Input tensor
 | |
|             
 | |
|         Returns:
 | |
|             errors: List of prediction errors
 | |
|         """
 | |
|         current = input_data
 | |
|         errors = []
 | |
|         
 | |
|         for layer in self.network.layers:
 | |
|             # Generate prediction
 | |
|             prediction = layer.forward(current)
 | |
|             
 | |
|             # Compute error
 | |
|             error = PredictionError(
 | |
|                 predicted=prediction,
 | |
|                 actual=current,
 | |
|                 precision=layer.precision
 | |
|             )
 | |
|             errors.append(error)
 | |
|             
 | |
|             # Update current input
 | |
|             current = prediction
 | |
|         
 | |
|         self.messages_up = errors
 | |
|         return errors
 | |
|     
 | |
|     def backward_messages(self, 
 | |
|                          top_down_signal: torch.Tensor) -> List[PredictionError]:
 | |
|         """Compute backward (top-down) messages.
 | |
|         
 | |
|         Args:
 | |
|             top_down_signal: Top-level signal
 | |
|             
 | |
|         Returns:
 | |
|             errors: List of prediction errors
 | |
|         """
 | |
|         current = top_down_signal
 | |
|         errors = []
 | |
|         
 | |
|         for layer in reversed(self.network.layers):
 | |
|             # Generate backward prediction
 | |
|             prediction = layer.backward(current)
 | |
|             
 | |
|             # Compute error
 | |
|             error = PredictionError(
 | |
|                 predicted=prediction,
 | |
|                 actual=current,
 | |
|                 precision=layer.precision
 | |
|             )
 | |
|             errors.append(error)
 | |
|             
 | |
|             # Update current signal
 | |
|             current = prediction
 | |
|         
 | |
|         self.messages_down = errors
 | |
|         return errors
 | |
| ```
 | |
| 
 | |
| ## Error Integration
 | |
| 
 | |
| ### Error Combination
 | |
| ```python
 | |
| def combine_errors(self,
 | |
|                   bottom_up: PredictionError,
 | |
|                   top_down: PredictionError) -> torch.Tensor:
 | |
|     """Combine bottom-up and top-down errors.
 | |
|     
 | |
|     Args:
 | |
|         bottom_up: Bottom-up prediction error
 | |
|         top_down: Top-down prediction error
 | |
|         
 | |
|     Returns:
 | |
|         combined: Combined error signal
 | |
|     """
 | |
|     # Weight errors by their precisions
 | |
|     weighted_up = bottom_up.error * bottom_up.precision
 | |
|     weighted_down = top_down.error * top_down.precision
 | |
|     
 | |
|     # Combine weighted errors
 | |
|     total_precision = bottom_up.precision + top_down.precision
 | |
|     combined = (weighted_up + weighted_down) / (total_precision + 1e-6)
 | |
|     
 | |
|     return combined
 | |
| ```
 | |
| 
 | |
| ### Update Rules
 | |
| ```python
 | |
| def update_layer(self,
 | |
|                  layer: PredictiveLayer,
 | |
|                  combined_error: torch.Tensor,
 | |
|                  learning_rate: float = 0.01):
 | |
|     """Update layer parameters based on combined error.
 | |
|     
 | |
|     Args:
 | |
|         layer: Layer to update
 | |
|         combined_error: Combined error signal
 | |
|         learning_rate: Learning rate for updates
 | |
|     """
 | |
|     # Compute gradients
 | |
|     with torch.enable_grad():
 | |
|         # Weight updates
 | |
|         dW_hidden = torch.autograd.grad(
 | |
|             combined_error.mean(),
 | |
|             layer.W_hidden
 | |
|         )[0]
 | |
|         dW_pred = torch.autograd.grad(
 | |
|             combined_error.mean(),
 | |
|             layer.W_pred
 | |
|         )[0]
 | |
|         
 | |
|         # Bias updates
 | |
|         db_hidden = torch.autograd.grad(
 | |
|             combined_error.mean(),
 | |
|             layer.b_hidden
 | |
|         )[0]
 | |
|         db_pred = torch.autograd.grad(
 | |
|             combined_error.mean(),
 | |
|             layer.b_pred
 | |
|         )[0]
 | |
|     
 | |
|     # Apply updates
 | |
|     with torch.no_grad():
 | |
|         layer.W_hidden -= learning_rate * dW_hidden
 | |
|         layer.W_pred -= learning_rate * dW_pred
 | |
|         layer.b_hidden -= learning_rate * db_hidden
 | |
|         layer.b_pred -= learning_rate * db_pred
 | |
| ```
 | |
| 
 | |
| ## Implementation Example
 | |
| 
 | |
| ### Full Network Update
 | |
| ```python
 | |
| def update_network(self,
 | |
|                   input_data: torch.Tensor,
 | |
|                   learning_rate: float = 0.01):
 | |
|     """Perform full network update.
 | |
|     
 | |
|     Args:
 | |
|         input_data: Input tensor
 | |
|         learning_rate: Learning rate for updates
 | |
|     """
 | |
|     # Forward pass
 | |
|     forward_errors = self.forward_messages(input_data)
 | |
|     
 | |
|     # Generate top-down signal
 | |
|     top_signal = self.network.layers[-1].forward(forward_errors[-1].actual)
 | |
|     
 | |
|     # Backward pass
 | |
|     backward_errors = self.backward_messages(top_signal)
 | |
|     
 | |
|     # Update each layer
 | |
|     for layer_idx, layer in enumerate(self.network.layers):
 | |
|         # Combine errors
 | |
|         combined = self.combine_errors(
 | |
|             forward_errors[layer_idx],
 | |
|             backward_errors[-(layer_idx + 1)]
 | |
|         )
 | |
|         
 | |
|         # Update layer
 | |
|         self.update_layer(layer, combined, learning_rate)
 | |
| ```
 | |
| 
 | |
| ## Advanced Features
 | |
| 
 | |
| ### Error Gating
 | |
| ```python
 | |
| def gate_error(self,
 | |
|                error: PredictionError,
 | |
|                threshold: float = 0.1) -> PredictionError:
 | |
|     """Gate error signal based on magnitude.
 | |
|     
 | |
|     Args:
 | |
|         error: Prediction error
 | |
|         threshold: Gating threshold
 | |
|         
 | |
|     Returns:
 | |
|         gated: Gated error signal
 | |
|     """
 | |
|     magnitude = torch.abs(error.error)
 | |
|     mask = magnitude > threshold
 | |
|     
 | |
|     gated_error = PredictionError(
 | |
|         predicted=error.predicted,
 | |
|         actual=error.actual,
 | |
|         precision=error.precision * mask.float()
 | |
|     )
 | |
|     
 | |
|     return gated_error
 | |
| ```
 | |
| 
 | |
| ### Temporal Integration
 | |
| ```python
 | |
| def integrate_temporal_errors(self,
 | |
|                             current_error: PredictionError,
 | |
|                             previous_errors: List[PredictionError],
 | |
|                             window_size: int = 5) -> PredictionError:
 | |
|     """Integrate errors over time.
 | |
|     
 | |
|     Args:
 | |
|         current_error: Current prediction error
 | |
|         previous_errors: List of previous errors
 | |
|         window_size: Integration window size
 | |
|         
 | |
|     Returns:
 | |
|         integrated: Temporally integrated error
 | |
|     """
 | |
|     # Collect recent errors
 | |
|     recent_errors = previous_errors[-window_size:]
 | |
|     recent_errors.append(current_error)
 | |
|     
 | |
|     # Compute weighted average
 | |
|     weights = torch.exp(-torch.arange(len(recent_errors)))
 | |
|     weights = weights / weights.sum()
 | |
|     
 | |
|     integrated_error = sum(
 | |
|         e.error * w for e, w in zip(recent_errors, weights)
 | |
|     )
 | |
|     
 | |
|     return PredictionError(
 | |
|         predicted=current_error.predicted,
 | |
|         actual=current_error.actual,
 | |
|         precision=current_error.precision,
 | |
|         error=integrated_error
 | |
|     )
 | |
| ```
 | |
| 
 | |
| ## Best Practices
 | |
| 
 | |
| ### Error Handling
 | |
| 1. Validate error magnitudes
 | |
| 2. Check precision values
 | |
| 3. Monitor gradients
 | |
| 4. Handle edge cases
 | |
| 
 | |
| ### Optimization
 | |
| 1. Batch processing
 | |
| 2. Memory management
 | |
| 3. Computational efficiency
 | |
| 4. Numerical stability
 | |
| 
 | |
| ### Debugging
 | |
| 1. Visualize error flow
 | |
| 2. Track convergence
 | |
| 3. Monitor updates
 | |
| 4. Validate predictions
 | |
| 
 | |
| ## Common Issues
 | |
| 
 | |
| ### Stability
 | |
| 1. Gradient explosion
 | |
| 2. Vanishing errors
 | |
| 3. Precision instability
 | |
| 4. Update oscillations
 | |
| 
 | |
| ### Solutions
 | |
| 1. Gradient clipping
 | |
| 2. Error normalization
 | |
| 3. Adaptive learning rates
 | |
| 4. Error gating
 | |
| 
 | |
| ## Related Documentation
 | |
| - [[predictive_network]]
 | |
| - [[precision_mechanisms]]
 | |
| - [[temporal_models]]  | 
