cognitive/docs/guides/simulation.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

3.2 KiB

title type status created tags semantic_relations
Simulation Guide guide draft 2024-02-12
simulation
modeling
framework
type links
implements
model_implementation
type links
relates
implementation_guides
ai_validation_framework

Simulation Framework Guide

Overview

This guide provides comprehensive documentation for running simulations in the cognitive modeling framework. It covers simulation setup, execution, analysis, and visualization.

Simulation Components

Core Elements

  1. Model Configuration

    • Parameter settings
    • Initial conditions
    • Environment setup
    • Agent definitions
  2. Execution Pipeline

    • Simulation steps
    • State updates
    • Event handling
    • Data collection
  3. Analysis Tools

    • Data processing
    • Statistical analysis
    • Performance metrics
    • Result validation

Configuration

simulation:
  name: cognitive_simulation
  duration: 1000  # timesteps
  agents: 10
  environment:
    type: dynamic
    dimensions: [100, 100]
  parameters:
    learning_rate: 0.01
    noise_level: 0.1
    update_interval: 5

Running Simulations

Basic Usage

from cognitive.simulation import Simulator

# Create simulator
sim = Simulator(config_path="config.yaml")

# Run simulation
results = sim.run()

# Analyze results
analysis = sim.analyze(results)

# Visualize
sim.visualize(analysis)

Advanced Features

  1. Batch Processing

    # Run multiple simulations
    batch_results = sim.run_batch(
        num_runs=10,
        parallel=True
    )
    
  2. Parameter Sweeps

    # Test different parameters
    param_results = sim.parameter_sweep(
        parameter="learning_rate",
        values=[0.01, 0.05, 0.1]
    )
    
  3. Custom Callbacks

    # Add custom monitoring
    @sim.on_step
    def monitor_state(state):
        log_metrics(state)
    

Analysis Tools

Data Processing

  • Time series analysis
  • State space analysis
  • Agent behavior analysis
  • Environment dynamics

Visualization

  • State trajectories
  • Agent interactions
  • Performance metrics
  • Network dynamics

Metrics

  • Convergence rates
  • Stability measures
  • Efficiency metrics
  • Error analysis

Best Practices

Performance

  • Use vectorized operations
  • Enable parallel processing
  • Optimize memory usage
  • Profile critical sections

Reproducibility

  • Set random seeds
  • Version configurations
  • Document parameters
  • Archive results

Validation

  • Unit test components
  • Verify constraints
  • Check conservation laws
  • Validate outputs

Advanced Topics

Custom Models

  • Extending base classes
  • Adding new behaviors
  • Custom environments
  • Specialized metrics

Distributed Simulation

  • Multi-node execution
  • Load balancing
  • Data synchronization
  • Result aggregation

Real-time Analysis

  • Live monitoring
  • Interactive visualization
  • Dynamic adjustment
  • Event handling

Integration Points

Data Pipeline

  • Input preprocessing
  • Result postprocessing
  • Data storage
  • Export formats

External Tools

  • Visualization libraries
  • Analysis packages
  • Storage backends
  • Monitoring systems