зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 13:16:05 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			392 строки
		
	
	
		
			14 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			392 строки
		
	
	
		
			14 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # Implementation Patterns Guide
 | |
| 
 | |
| ---
 | |
| title: Implementation Patterns Guide
 | |
| type: guide
 | |
| status: stable
 | |
| created: 2024-02-06
 | |
| tags:
 | |
|   - implementation
 | |
|   - patterns
 | |
|   - design
 | |
|   - architecture
 | |
| semantic_relations:
 | |
|   - type: implements
 | |
|     links: 
 | |
|       - [[knowledge_base/cognitive/active_inference|Active Inference]]
 | |
|       - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
 | |
|   - type: relates
 | |
|     links:
 | |
|       - [[docs/api/api_reference|API Reference]]
 | |
|       - [[docs/concepts/theoretical_foundations|Theoretical Foundations]]
 | |
| ---
 | |
| 
 | |
| ## Overview
 | |
| 
 | |
| This guide outlines implementation patterns for translating cognitive science theory into practical code. While the [[knowledge_base/cognitive/cognitive_science|knowledge base]] provides theoretical foundations, this guide focuses on concrete implementation strategies.
 | |
| 
 | |
| ## Core Implementation Patterns
 | |
| 
 | |
| ### Active Inference Implementation
 | |
| ```python
 | |
| # @active_inference_pattern
 | |
| class ActiveInferencePattern:
 | |
|     """
 | |
|     Core implementation pattern for Active Inference.
 | |
|     
 | |
|     Theory: [[knowledge_base/cognitive/active_inference|Active Inference]]
 | |
|     API: [[docs/api/api_reference#active-inference-framework|API Reference]]
 | |
|     """
 | |
|     def __init__(self):
 | |
|         self.belief_updater = BeliefUpdater()  # [[belief_updating]]
 | |
|         self.policy_selector = PolicySelector()  # [[action_selection]]
 | |
|         self.state_estimator = StateEstimator()  # [[state_estimation]]
 | |
|     
 | |
|     def cycle(self, observation: Observation) -> Action:
 | |
|         """
 | |
|         Single cycle of perception-action.
 | |
|         
 | |
|         Theory: [[knowledge_base/cognitive/active_inference#perception-action-cycle|Perception-Action Cycle]]
 | |
|         """
 | |
|         # Update beliefs
 | |
|         beliefs = self.belief_updater.update(observation)
 | |
|         
 | |
|         # Select policy
 | |
|         policy = self.policy_selector.select(beliefs)
 | |
|         
 | |
|         # Execute action
 | |
|         action = policy.get_action()
 | |
|         
 | |
|         return action
 | |
| ```
 | |
| 
 | |
| ### Belief Updating Pattern
 | |
| ```python
 | |
| # @belief_updating_pattern
 | |
| class BeliefUpdatePattern:
 | |
|     """
 | |
|     Implementation pattern for belief updating.
 | |
|     
 | |
|     Theory:
 | |
|         - [[knowledge_base/cognitive/predictive_processing#belief-updating|Belief Updating]]
 | |
|         - [[knowledge_base/cognitive/free_energy_principle#variational-inference|Variational Inference]]
 | |
|     Mathematics:
 | |
|         - [[knowledge_base/mathematics/variational_methods|Variational Methods]]
 | |
|         - [[knowledge_base/mathematics/information_geometry|Information Geometry]]
 | |
|     API: [[docs/api/api_reference#belief-updating-system|API Reference]]
 | |
|     """
 | |
|     def update_beliefs(self, 
 | |
|                       prior: Distribution,
 | |
|                       likelihood: Distribution) -> Distribution:
 | |
|         """
 | |
|         Update beliefs using variational inference.
 | |
|         
 | |
|         Theory:
 | |
|             - [[knowledge_base/cognitive/free_energy_principle#variational-inference|Variational Inference]]
 | |
|             - [[knowledge_base/mathematics/kullback_leibler|KL Divergence]]
 | |
|         Implementation:
 | |
|             - [[docs/api/matrix_operations#gradient-descent|Gradient Descent]]
 | |
|             - [[docs/api/optimization_methods#natural-gradients|Natural Gradients]]
 | |
|         """
 | |
|         # Compute posterior using variational methods
 | |
|         posterior = self._compute_posterior(prior, likelihood)
 | |
|         
 | |
|         # Minimize free energy using natural gradients
 | |
|         optimized = self._minimize_free_energy(posterior)
 | |
|         
 | |
|         return optimized
 | |
|     
 | |
|     def _compute_posterior(self, prior: Distribution, likelihood: Distribution) -> Distribution:
 | |
|         """
 | |
|         Compute posterior distribution.
 | |
|         
 | |
|         Mathematics:
 | |
|             - [[knowledge_base/mathematics/bayes_theorem|Bayes Theorem]]
 | |
|             - [[knowledge_base/mathematics/exponential_families|Exponential Families]]
 | |
|         Implementation:
 | |
|             - [[docs/api/probability_utils#distribution-ops|Distribution Operations]]
 | |
|         """
 | |
|         pass
 | |
|     
 | |
|     def _minimize_free_energy(self, posterior: Distribution) -> Distribution:
 | |
|         """
 | |
|         Minimize variational free energy.
 | |
|         
 | |
|         Mathematics:
 | |
|             - [[knowledge_base/mathematics/variational_calculus|Variational Calculus]]
 | |
|             - [[knowledge_base/mathematics/optimization_theory|Optimization Theory]]
 | |
|         Implementation:
 | |
|             - [[docs/api/optimization_methods#variational-optimization|Variational Optimization]]
 | |
|         """
 | |
|         pass
 | |
| ```
 | |
| 
 | |
| ### Policy Selection Pattern
 | |
| ```python
 | |
| # @policy_selection_pattern
 | |
| class PolicySelectionPattern:
 | |
|     """
 | |
|     Implementation pattern for policy selection.
 | |
|     
 | |
|     Theory:
 | |
|         - [[knowledge_base/cognitive/active_inference#policy-selection|Policy Selection]]
 | |
|         - [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]]
 | |
|     Mathematics:
 | |
|         - [[knowledge_base/mathematics/information_theory|Information Theory]]
 | |
|         - [[knowledge_base/mathematics/decision_theory|Decision Theory]]
 | |
|     API: [[docs/api/api_reference#policy-selection|Policy Selection API]]
 | |
|     """
 | |
|     def select_policy(self,
 | |
|                      beliefs: BeliefState,
 | |
|                      policies: List[Policy]) -> Policy:
 | |
|         """
 | |
|         Select optimal policy using expected free energy.
 | |
|         
 | |
|         Theory:
 | |
|             - [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]]
 | |
|             - [[knowledge_base/cognitive/active_inference#action-selection|Action Selection]]
 | |
|         Mathematics:
 | |
|             - [[knowledge_base/mathematics/expected_utility|Expected Utility]]
 | |
|             - [[knowledge_base/mathematics/information_gain|Information Gain]]
 | |
|         Implementation:
 | |
|             - [[docs/api/optimization_methods#policy-optimization|Policy Optimization]]
 | |
|         """
 | |
|         # Generate and evaluate policies
 | |
|         policies = self._generate_policies()
 | |
|         policy_values = self._evaluate_policies(policies, beliefs)
 | |
|         
 | |
|         # Select optimal policy using softmax
 | |
|         optimal_policy = self._select_optimal_policy(policy_values)
 | |
|         
 | |
|         return optimal_policy
 | |
|     
 | |
|     def _evaluate_policies(self, 
 | |
|                           policies: List[Policy], 
 | |
|                           beliefs: BeliefState) -> np.ndarray:
 | |
|         """
 | |
|         Evaluate policies using expected free energy.
 | |
|         
 | |
|         Mathematics:
 | |
|             - [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]]
 | |
|             - [[knowledge_base/mathematics/path_integral|Path Integral]]
 | |
|         Implementation:
 | |
|             - [[docs/api/matrix_operations#policy-evaluation|Policy Evaluation]]
 | |
|         """
 | |
|         pass
 | |
|     
 | |
|     def _select_optimal_policy(self, 
 | |
|                              policy_values: np.ndarray) -> Policy:
 | |
|         """
 | |
|         Select optimal policy using softmax.
 | |
|         
 | |
|         Mathematics:
 | |
|             - [[knowledge_base/mathematics/softmax|Softmax Function]]
 | |
|             - [[knowledge_base/mathematics/temperature_scaling|Temperature Scaling]]
 | |
|         Implementation:
 | |
|             - [[docs/api/probability_utils#softmax|Softmax Implementation]]
 | |
|         """
 | |
|         pass
 | |
| ```
 | |
| 
 | |
| ### Perception Implementation Pattern
 | |
| ```python
 | |
| # @perception_pattern
 | |
| class PerceptionPattern:
 | |
|     """
 | |
|     Implementation pattern for perceptual processing.
 | |
|     
 | |
|     Theory:
 | |
|         - [[knowledge_base/cognitive/predictive_processing#perception|Predictive Processing]]
 | |
|         - [[knowledge_base/cognitive/free_energy_principle#perceptual-inference|Perceptual Inference]]
 | |
|     Mathematics:
 | |
|         - [[knowledge_base/mathematics/hierarchical_models|Hierarchical Models]]
 | |
|         - [[knowledge_base/mathematics/message_passing|Message Passing]]
 | |
|     API: [[docs/api/api_reference#perception-system|Perception API]]
 | |
|     """
 | |
|     def process_input(self, 
 | |
|                      sensory_input: Input,
 | |
|                      prior_beliefs: BeliefState) -> Observation:
 | |
|         """
 | |
|         Process sensory input using predictive processing.
 | |
|         
 | |
|         Theory:
 | |
|             - [[knowledge_base/cognitive/predictive_processing#sensory-processing|Sensory Processing]]
 | |
|             - [[knowledge_base/cognitive/active_inference#perception|Active Inference Perception]]
 | |
|         Mathematics:
 | |
|             - [[knowledge_base/mathematics/prediction_error|Prediction Error]]
 | |
|             - [[knowledge_base/mathematics/precision_weighting|Precision Weighting]]
 | |
|         Implementation:
 | |
|             - [[docs/api/matrix_operations#error-computation|Error Computation]]
 | |
|             - [[docs/api/probability_utils#precision-scaling|Precision Scaling]]
 | |
|         """
 | |
|         # Compute prediction errors
 | |
|         prediction_errors = self._compute_prediction_errors(
 | |
|             sensory_input, prior_beliefs
 | |
|         )
 | |
|         
 | |
|         # Weight by precision
 | |
|         weighted_errors = self._weight_by_precision(prediction_errors)
 | |
|         
 | |
|         # Update beliefs
 | |
|         updated_beliefs = self._update_beliefs(weighted_errors)
 | |
|         
 | |
|         return updated_beliefs
 | |
|     
 | |
|     def _compute_prediction_errors(self,
 | |
|                                  sensory_input: Input,
 | |
|                                  predictions: Predictions) -> PredictionErrors:
 | |
|         """
 | |
|         Compute hierarchical prediction errors.
 | |
|         
 | |
|         Mathematics:
 | |
|             - [[knowledge_base/mathematics/error_propagation|Error Propagation]]
 | |
|             - [[knowledge_base/mathematics/hierarchical_inference|Hierarchical Inference]]
 | |
|         Implementation:
 | |
|             - [[docs/api/matrix_operations#error-propagation|Error Propagation]]
 | |
|         """
 | |
|         pass
 | |
|     
 | |
|     def _weight_by_precision(self,
 | |
|                            prediction_errors: PredictionErrors) -> WeightedErrors:
 | |
|         """
 | |
|         Weight prediction errors by precision.
 | |
|         
 | |
|         Mathematics:
 | |
|             - [[knowledge_base/mathematics/precision_matrices|Precision Matrices]]
 | |
|             - [[knowledge_base/mathematics/uncertainty_propagation|Uncertainty Propagation]]
 | |
|         Implementation:
 | |
|             - [[docs/api/matrix_operations#precision-weighting|Precision Weighting]]
 | |
|         """
 | |
|         pass
 | |
| ```
 | |
| 
 | |
| ## Design Patterns
 | |
| 
 | |
| ### 1. Model-View-Controller
 | |
| ```python
 | |
| # @mvc_pattern
 | |
| class ModelPattern:
 | |
|     """
 | |
|     MVC pattern for cognitive models.
 | |
|     
 | |
|     Theory: [[knowledge_base/cognitive/cognitive_phenomena#model-architecture|Model Architecture]]
 | |
|     """
 | |
|     def __init__(self):
 | |
|         self.model = GenerativeModel()  # Internal model
 | |
|         self.view = ModelView()         # Visualization
 | |
|         self.controller = ModelController()  # Control logic
 | |
| ```
 | |
| 
 | |
| ### 2. Observer Pattern
 | |
| ```python
 | |
| # @observer_pattern
 | |
| class BeliefObserver:
 | |
|     """
 | |
|     Observer pattern for belief monitoring.
 | |
|     
 | |
|     Theory: [[knowledge_base/cognitive/predictive_processing#belief-monitoring|Belief Monitoring]]
 | |
|     """
 | |
|     def update(self, beliefs: BeliefState):
 | |
|         """Update on belief changes."""
 | |
|         self._log_beliefs(beliefs)
 | |
|         self._visualize_beliefs(beliefs)
 | |
| ```
 | |
| 
 | |
| ## Integration Patterns
 | |
| 
 | |
| ### 1. Component Integration
 | |
| ```python
 | |
| # @integration_pattern
 | |
| class IntegrationPattern:
 | |
|     """
 | |
|     Pattern for component integration.
 | |
|     
 | |
|     See [[docs/guides/system_integration|System Integration]]
 | |
|     """
 | |
|     def __init__(self):
 | |
|         self.belief_component = BeliefComponent()
 | |
|         self.action_component = ActionComponent()
 | |
|         self.perception_component = PerceptionComponent()
 | |
| ```
 | |
| 
 | |
| ### 2. Pipeline Pattern
 | |
| ```python
 | |
| # @pipeline_pattern
 | |
| class ProcessingPipeline:
 | |
|     """
 | |
|     Pattern for information processing pipeline.
 | |
|     
 | |
|     Theory: [[knowledge_base/cognitive/predictive_processing#processing-hierarchy|Processing Hierarchy]]
 | |
|     """
 | |
|     def process(self, input_data: Data) -> Result:
 | |
|         """Process data through pipeline stages."""
 | |
|         preprocessed = self._preprocess(input_data)
 | |
|         processed = self._process(preprocessed)
 | |
|         postprocessed = self._postprocess(processed)
 | |
|         return postprocessed
 | |
| ```
 | |
| 
 | |
| ## Validation Patterns
 | |
| 
 | |
| ### 1. Model Validation
 | |
| ```python
 | |
| # @validation_pattern
 | |
| class ValidationPattern:
 | |
|     """
 | |
|     Pattern for model validation.
 | |
|     
 | |
|     See [[docs/guides/validation_guide|Validation Guide]]
 | |
|     """
 | |
|     def validate_model(self, model: Model) -> ValidationResult:
 | |
|         """Validate model components and behavior."""
 | |
|         structure_valid = self._validate_structure(model)
 | |
|         behavior_valid = self._validate_behavior(model)
 | |
|         performance_valid = self._validate_performance(model)
 | |
|         return ValidationResult(structure_valid, behavior_valid, performance_valid)
 | |
| ```
 | |
| 
 | |
| ### 2. Testing Pattern
 | |
| ```python
 | |
| # @testing_pattern
 | |
| class TestingPattern:
 | |
|     """
 | |
|     Pattern for comprehensive testing.
 | |
|     
 | |
|     See [[docs/guides/testing_guide|Testing Guide]]
 | |
|     """
 | |
|     def test_suite(self) -> TestResults:
 | |
|         """Run complete test suite."""
 | |
|         unit_results = self._run_unit_tests()
 | |
|         integration_results = self._run_integration_tests()
 | |
|         system_results = self._run_system_tests()
 | |
|         return TestResults(unit_results, integration_results, system_results)
 | |
| ```
 | |
| 
 | |
| ## Best Practices
 | |
| 
 | |
| ### 1. Code Organization
 | |
| - Follow [[docs/guides/code_organization|Code Organization Guide]]
 | |
| - Use [[docs/guides/naming_conventions|Naming Conventions]]
 | |
| - Implement [[docs/guides/documentation_standards|Documentation Standards]]
 | |
| 
 | |
| ### 2. Performance Optimization
 | |
| - Follow [[docs/guides/performance_optimization|Optimization Guide]]
 | |
| - Use [[docs/guides/profiling_guide|Profiling Guide]]
 | |
| - Monitor [[docs/guides/performance_metrics|Performance Metrics]]
 | |
| 
 | |
| ### 3. Quality Assurance
 | |
| - Implement [[docs/guides/testing_guide|Testing Guidelines]]
 | |
| - Follow [[docs/guides/code_review|Code Review Process]]
 | |
| - Use [[docs/guides/validation_framework|Validation Framework]]
 | |
| 
 | |
| ## Related Documentation
 | |
| - [[knowledge_base/cognitive/cognitive_science|Cognitive Science Theory]]
 | |
| - [[docs/api/api_reference|API Reference]]
 | |
| - [[docs/guides/system_integration|System Integration]]
 | |
| - [[docs/guides/validation_guide|Validation Guide]]
 | |
| 
 | |
| ## References
 | |
| - [[knowledge_base/cognitive/active_inference|Active Inference]]
 | |
| - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
 | |
| - [[knowledge_base/cognitive/predictive_processing|Predictive Processing]]
 | |
| - [[docs/concepts/theoretical_foundations|Theoretical Foundations]]  | 
