зеркало из
https://github.com/docxology/cognitive.git
synced 2025-11-04 15:16:05 +02:00
209 строки
6.3 KiB
Markdown
209 строки
6.3 KiB
Markdown
---
|
|
title: Active Inference Learning Path
|
|
type: learning_path
|
|
status: stable
|
|
created: 2024-02-07
|
|
tags:
|
|
- active_inference
|
|
- learning
|
|
- progression
|
|
semantic_relations:
|
|
- type: implements
|
|
links: [[learning_path_template]]
|
|
- type: relates
|
|
links:
|
|
- [[knowledge_base/cognitive/active_inference]]
|
|
- [[knowledge_base/mathematics/free_energy_theory]]
|
|
---
|
|
|
|
# Active Inference Learning Path
|
|
|
|
## Overview
|
|
|
|
This learning path guides you through understanding and implementing active inference, from foundational concepts to advanced applications. You'll learn the theoretical principles, mathematical foundations, and practical implementations.
|
|
|
|
## Prerequisites
|
|
|
|
### Required Knowledge
|
|
- [[knowledge_base/mathematics/probability_theory|Probability Theory]]
|
|
- [[knowledge_base/mathematics/information_theory|Information Theory]]
|
|
- [[knowledge_base/mathematics/statistical_foundations|Statistical Foundations]]
|
|
|
|
### Recommended Background
|
|
- [[knowledge_base/cognitive/bayesian_brain|Bayesian Brain]]
|
|
- [[knowledge_base/cognitive/predictive_processing|Predictive Processing]]
|
|
- Python programming experience
|
|
|
|
## Learning Progression
|
|
|
|
### 1. Foundation (Week 1-2)
|
|
#### Core Concepts
|
|
- [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
|
|
- [[knowledge_base/cognitive/predictive_processing|Predictive Processing]]
|
|
- [[knowledge_base/cognitive/active_inference|Active Inference Basics]]
|
|
|
|
#### Practical Exercises
|
|
- [[examples/basic_belief_updating|Basic Belief Updating]]
|
|
- [[examples/simple_prediction|Simple Prediction Exercise]]
|
|
|
|
#### Learning Objectives
|
|
- Understand the free energy principle
|
|
- Grasp predictive processing fundamentals
|
|
- Implement basic belief updating
|
|
|
|
### 2. Mathematical Framework (Week 3-4)
|
|
#### Advanced Concepts
|
|
- [[knowledge_base/mathematics/variational_methods|Variational Methods]]
|
|
- [[knowledge_base/mathematics/free_energy_theory|Free Energy Theory]]
|
|
- [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]]
|
|
|
|
#### Implementation Practice
|
|
- [[examples/variational_inference|Variational Inference]]
|
|
- [[examples/free_energy_computation|Free Energy Computation]]
|
|
|
|
#### Learning Objectives
|
|
- Master variational inference
|
|
- Implement free energy computation
|
|
- Understand expected free energy
|
|
|
|
### 3. Implementation (Week 5-6)
|
|
#### Core Components
|
|
- [[knowledge_base/mathematics/belief_updating|Belief Updating]]
|
|
- [[knowledge_base/mathematics/policy_selection|Policy Selection]]
|
|
- [[knowledge_base/mathematics/action_distribution|Action Distribution]]
|
|
|
|
#### Projects
|
|
- [[examples/active_inference_basic|Basic Active Inference Agent]]
|
|
- [[examples/pomdp_agent|POMDP Implementation]]
|
|
|
|
#### Learning Objectives
|
|
- Implement complete active inference agent
|
|
- Master POMDP framework integration
|
|
- Handle real-world applications
|
|
|
|
### 4. Advanced Topics (Week 7-8)
|
|
#### Specialized Areas
|
|
- [[knowledge_base/mathematics/path_integral_theory|Path Integral Methods]]
|
|
- [[knowledge_base/cognitive/hierarchical_processing|Hierarchical Models]]
|
|
- [[knowledge_base/cognitive/social_cognition|Social Active Inference]]
|
|
|
|
#### Advanced Projects
|
|
- [[examples/hierarchical_agent|Hierarchical Agent]]
|
|
- [[examples/multi_agent|Multi-Agent System]]
|
|
|
|
#### Learning Objectives
|
|
- Implement hierarchical models
|
|
- Develop multi-agent systems
|
|
- Apply to complex domains
|
|
|
|
## Study Resources
|
|
|
|
### Core Reading
|
|
- [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
|
|
- [[knowledge_base/mathematics/active_inference_theory|Active Inference Theory]]
|
|
- [[knowledge_base/cognitive/active_inference|Active Inference Overview]]
|
|
|
|
### Code Examples
|
|
- [[examples/active_inference_basic|Basic Implementation]]
|
|
- [[examples/pomdp_agent|POMDP Example]]
|
|
- [[examples/hierarchical_agent|Hierarchical Example]]
|
|
|
|
### Additional Resources
|
|
- Research papers collection
|
|
- Video tutorials
|
|
- Community discussions
|
|
|
|
## Assessment
|
|
|
|
### Knowledge Checkpoints
|
|
1. Foundation: Free energy and predictive processing
|
|
2. Mathematics: Variational methods and inference
|
|
3. Implementation: Agent architecture and POMDP
|
|
4. Advanced: Hierarchical and multi-agent systems
|
|
|
|
### Projects
|
|
1. Mini-project: Basic belief updating system
|
|
2. Implementation: Active inference agent
|
|
3. Final project: Complex application domain
|
|
|
|
### Success Criteria
|
|
- Theoretical understanding demonstrated
|
|
- Working implementations completed
|
|
- Advanced concepts mastered
|
|
- Real-world application developed
|
|
|
|
## Next Steps
|
|
|
|
### Advanced Paths
|
|
- [[learning_paths/hierarchical_modeling|Hierarchical Modeling]]
|
|
- [[learning_paths/multi_agent_systems|Multi-Agent Systems]]
|
|
- [[learning_paths/robotics_control|Robotics Control]]
|
|
|
|
### Specializations
|
|
- [[specializations/neuroscience|Computational Neuroscience]]
|
|
- [[specializations/robotics|Robotics and Control]]
|
|
- [[specializations/ai|Artificial Intelligence]]
|
|
|
|
## Related Paths
|
|
|
|
### Prerequisites
|
|
- [[learning_paths/probability_theory|Probability Theory]]
|
|
- [[learning_paths/information_theory|Information Theory]]
|
|
|
|
### Follow-up Paths
|
|
- [[learning_paths/advanced_ai|Advanced AI]]
|
|
- [[learning_paths/cognitive_architectures|Cognitive Architectures]]
|
|
|
|
## Implementation Examples
|
|
|
|
### Basic Examples
|
|
```python
|
|
# Basic active inference agent structure
|
|
class ActiveInferenceAgent:
|
|
def __init__(self, model_params):
|
|
self.beliefs = initialize_beliefs()
|
|
self.policies = generate_policies()
|
|
|
|
def update_beliefs(self, observation):
|
|
# Belief updating using variational inference
|
|
pass
|
|
|
|
def select_action(self):
|
|
# Policy selection using expected free energy
|
|
pass
|
|
```
|
|
|
|
### Advanced Implementation
|
|
```python
|
|
# Hierarchical active inference
|
|
class HierarchicalAgent:
|
|
def __init__(self, levels):
|
|
self.levels = [
|
|
ActiveInferenceAgent(level_params)
|
|
for level_params in levels
|
|
]
|
|
|
|
def update(self, observation):
|
|
# Hierarchical message passing
|
|
for level in self.levels:
|
|
level.update_beliefs(observation)
|
|
prediction = level.generate_prediction()
|
|
observation = prediction # For next level
|
|
```
|
|
|
|
## Common Challenges
|
|
|
|
### Theoretical Challenges
|
|
- Understanding variational inference
|
|
- Grasping hierarchical processing
|
|
- Interpreting free energy
|
|
|
|
### Implementation Challenges
|
|
- Numerical stability
|
|
- Performance optimization
|
|
- Model design
|
|
|
|
### Solutions
|
|
- Start with simple examples
|
|
- Use provided templates
|
|
- Follow progressive complexity |