зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 21:26:04 +02:00 
			
		
		
		
	
		
			
				
	
	
	
		
			7.1 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			7.1 KiB
		
	
	
	
	
	
	
	
| title | type | status | created | tags | semantic_relations | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Swarm Intelligence Learning Path | learning_path | stable | 2024-02-07 | 
 | 
 | 
Swarm Intelligence Learning Path
Overview
This learning path guides you through understanding and implementing swarm intelligence systems, with special focus on biologically-inspired collective behavior. You'll learn theoretical principles, mathematical models, and practical implementations using the ant colony example.
Prerequisites
Required Knowledge
- knowledge_base/mathematics/probability_theory
- knowledge_base/cognitive/emergence_self_organization
- knowledge_base/systems/systems_theory
Recommended Background
- Python programming
- Basic agent-based modeling
- Complex systems concepts
Learning Progression
1. Foundations (Week 1-2)
Core Concepts
- knowledge_base/cognitive/collective_behavior
- knowledge_base/cognitive/emergence_self_organization
- knowledge_base/cognitive/stigmergic_coordination
Practical Exercises
Learning Objectives
- Understand swarm principles
- Implement basic swarm behaviors
- Analyze emergent patterns
2. Ant Colony Systems (Week 3-4)
Advanced Concepts
- knowledge_base/cognitive/social_insect_cognition
- knowledge_base/cognitive/collective_behavior_ants
- knowledge_base/cognitive/pheromone_communication
Implementation Practice
Learning Objectives
- Implement pheromone systems
- Model foraging behavior
- Develop path optimization
3. Advanced Implementation (Week 5-6)
Core Components
- knowledge_base/cognitive/active_inference
- knowledge_base/mathematics/path_integral_theory
- knowledge_base/cognitive/hierarchical_processing
Projects
Learning Objectives
- Implement complete colony system
- Integrate active inference
- Develop advanced features
Implementation Examples
Basic Swarm Agent
class SwarmAgent:
    def __init__(self, config):
        self.position = initialize_position()
        self.velocity = initialize_velocity()
        self.sensors = create_sensors()
        
    def update(self, neighbors, environment):
        """Update agent state based on local information."""
        # Process sensor information
        local_info = self.sensors.process(neighbors, environment)
        
        # Update movement
        self.velocity = compute_velocity(local_info)
        self.position += self.velocity
        
    def interact(self, environment):
        """Interact with environment (e.g., deposit pheromones)."""
        pass
Ant Colony Implementation
class AntColony:
    def __init__(self, config):
        self.agents = create_agents(config)
        self.environment = create_environment(config)
        self.pheromone_grid = initialize_pheromones()
        
    def update(self, dt):
        """Update colony state."""
        # Update agents
        for agent in self.agents:
            observation = self.environment.get_local_state(agent.position)
            agent.update(dt, observation)
            
        # Update environment
        self.environment.update(dt)
        self.pheromone_grid *= self.config.pheromone_decay
        
    def run_simulation(self, steps):
        """Run simulation for specified steps."""
        for step in range(steps):
            self.update(self.config.timestep)
            self.collect_data(step)
Study Resources
Core Reading
- knowledge_base/cognitive/swarm_intelligence
- knowledge_base/cognitive/collective_behavior
- knowledge_base/cognitive/social_insect_cognition
Code Examples
Additional Resources
- Research papers
- Video tutorials
- Interactive simulations
Assessment
Knowledge Checkpoints
- Swarm fundamentals
- Ant colony systems
- Advanced implementations
- Real-world applications
Projects
- Mini-project: Basic swarm simulation
- Implementation: Ant colony system
- Final project: Advanced application
Success Criteria
- Working swarm implementation
- Ant colony simulation
- Advanced features
- Performance optimization
Next Steps
Advanced Paths
Specializations
- specializations/swarm_robotics
- specializations/collective_intelligence
- specializations/bio_inspired_computing
Related Paths
Prerequisites
Follow-up Paths
Common Challenges
Theoretical Challenges
- Understanding emergence
- Modeling collective behavior
- Analyzing system dynamics
Implementation Challenges
- Efficient simulation
- Scalability issues
- Visualization complexity
Solutions
- Start with simple models
- Incremental complexity
- Regular validation
- Performance profiling
Example Configurations
Basic Swarm Config
swarm:
  population_size: 100
  sensor_range: 5.0
  max_speed: 2.0
  interaction_radius: 3.0
environment:
  size: [100, 100]
  obstacles: 10
  boundary_conditions: "periodic"
Ant Colony Config
colony:
  ants: 50
  nest_location: [50, 50]
  pheromone_decay: 0.99
  
foraging:
  food_sources: 5
  food_value: 1.0
  max_steps: 10000
Visualization Tools
Basic Visualization
def visualize_swarm(agents, environment):
    """Visualize swarm behavior."""
    plt.figure(figsize=(10, 10))
    
    # Plot agents
    positions = [agent.position for agent in agents]
    plt.scatter([p.x for p in positions], 
                [p.y for p in positions])
    
    # Plot environment
    environment.plot()
    plt.show()
Advanced Analysis
def analyze_behavior(simulation_data):
    """Analyze collective behavior patterns."""
    # Compute metrics
    coherence = compute_coherence(simulation_data)
    efficiency = compute_efficiency(simulation_data)
    
    # Visualize results
    plot_metrics(coherence, efficiency)
