зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 05:06:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			328 строки
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			328 строки
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # AI Semantic Processing Guide
 | |
| 
 | |
| ---
 | |
| title: AI Semantic Processing Guide
 | |
| type: guide
 | |
| status: stable
 | |
| created: 2024-02-06
 | |
| tags:
 | |
|   - semantic
 | |
|   - embeddings
 | |
|   - ai
 | |
|   - processing
 | |
| complexity: advanced
 | |
| processing_priority: 1
 | |
| semantic_relations:
 | |
|   - type: implements
 | |
|     links: [[machine_readability]]
 | |
|   - type: extends
 | |
|     links: [[knowledge_organization]]
 | |
| embeddings:
 | |
|   model: sentence-transformers/all-mpnet-base-v2
 | |
|   dimensions: 768
 | |
| ---
 | |
| 
 | |
| ## Overview
 | |
| This guide defines semantic processing standards and embedding strategies for hyper-intelligent agents to effectively process and understand the knowledge base.
 | |
| 
 | |
| ## Semantic Processing Framework
 | |
| 
 | |
| ### Text Embeddings
 | |
| ```python
 | |
| # @embedding_specification
 | |
| embedding_config = {
 | |
|     "models": {
 | |
|         "text": "sentence-transformers/all-mpnet-base-v2",
 | |
|         "code": "microsoft/codebert-base",
 | |
|         "graph": "knowledge-graph-bert"
 | |
|     },
 | |
|     "dimensions": {
 | |
|         "text": 768,
 | |
|         "code": 768,
 | |
|         "graph": 512
 | |
|     },
 | |
|     "pooling": "mean",
 | |
|     "normalization": "l2"
 | |
| }
 | |
| ```
 | |
| 
 | |
| ### Semantic Markers
 | |
| ```yaml
 | |
| semantic_markers:
 | |
|   concept:
 | |
|     prefix: "#CONCEPT:"
 | |
|     weight: 1.0
 | |
|     embedding_type: "text"
 | |
|   implementation:
 | |
|     prefix: "#IMPL:"
 | |
|     weight: 0.8
 | |
|     embedding_type: "code"
 | |
|   relationship:
 | |
|     prefix: "#REL:"
 | |
|     weight: 0.9
 | |
|     embedding_type: "graph"
 | |
| ```
 | |
| 
 | |
| ## Knowledge Graph Integration
 | |
| 
 | |
| ### Graph Structure
 | |
| ```python
 | |
| # @graph_specification
 | |
| class KnowledgeGraphNode:
 | |
|     """
 | |
|     Knowledge graph node with semantic embeddings
 | |
|     """
 | |
|     def __init__(self):
 | |
|         self.embeddings = {
 | |
|             "text": np.ndarray,    # Text embedding
 | |
|             "code": np.ndarray,    # Code embedding
 | |
|             "graph": np.ndarray    # Graph structure embedding
 | |
|         }
 | |
|         self.relationships = []    # Typed edges
 | |
|         self.metadata = {}         # Node metadata
 | |
| ```
 | |
| 
 | |
| ### Relationship Types
 | |
| ```yaml
 | |
| relationship_types:
 | |
|   hierarchical:
 | |
|     - is_a: 0.9          # Type hierarchy
 | |
|     - part_of: 0.8       # Composition
 | |
|     - implements: 0.7    # Implementation
 | |
|   semantic:
 | |
|     - similar_to: 0.6    # Semantic similarity
 | |
|     - related_to: 0.5    # General relation
 | |
|     - references: 0.4    # Reference relation
 | |
|   temporal:
 | |
|     - precedes: 0.8      # Temporal ordering
 | |
|     - depends_on: 0.7    # Dependency
 | |
|     - evolves_to: 0.6    # Evolution
 | |
| ```
 | |
| 
 | |
| ## Processing Instructions
 | |
| 
 | |
| ### Embedding Generation
 | |
| ```python
 | |
| # @embedding_generation
 | |
| def generate_embeddings(content: str, type: str) -> dict:
 | |
|     """
 | |
|     Generate embeddings for content
 | |
|     
 | |
|     Processing steps:
 | |
|     1. Preprocess content based on type
 | |
|     2. Select appropriate model
 | |
|     3. Generate embeddings
 | |
|     4. Post-process and validate
 | |
|     """
 | |
|     pass
 | |
| ```
 | |
| 
 | |
| ### Semantic Analysis
 | |
| ```python
 | |
| # @semantic_analysis
 | |
| def analyze_semantics(node: KnowledgeGraphNode) -> dict:
 | |
|     """
 | |
|     Analyze semantic content
 | |
|     
 | |
|     Analysis steps:
 | |
|     1. Extract key concepts
 | |
|     2. Identify relationships
 | |
|     3. Compute similarities
 | |
|     4. Generate insights
 | |
|     """
 | |
|     pass
 | |
| ```
 | |
| 
 | |
| ## Query Processing
 | |
| 
 | |
| ### Semantic Search
 | |
| ```python
 | |
| # @semantic_search
 | |
| def semantic_search(query: str, context: dict) -> list:
 | |
|     """
 | |
|     Semantic search implementation
 | |
|     
 | |
|     Search process:
 | |
|     1. Embed query
 | |
|     2. Compute similarities
 | |
|     3. Filter by context
 | |
|     4. Rank results
 | |
|     """
 | |
|     pass
 | |
| ```
 | |
| 
 | |
| ### Relationship Inference
 | |
| ```python
 | |
| # @relationship_inference
 | |
| def infer_relationships(source: KnowledgeGraphNode, target: KnowledgeGraphNode) -> list:
 | |
|     """
 | |
|     Infer relationships between nodes
 | |
|     
 | |
|     Inference steps:
 | |
|     1. Compare embeddings
 | |
|     2. Analyze context
 | |
|     3. Apply inference rules
 | |
|     4. Validate relationships
 | |
|     """
 | |
|     pass
 | |
| ```
 | |
| 
 | |
| ## Processing Pipeline
 | |
| 
 | |
| ### Document Processing
 | |
| ```mermaid
 | |
| graph TD
 | |
|     A[Raw Document] --> B[Text Extraction]
 | |
|     B --> C[Semantic Parsing]
 | |
|     C --> D[Embedding Generation]
 | |
|     D --> E[Graph Integration]
 | |
|     E --> F[Validation]
 | |
| ```
 | |
| 
 | |
| ### Query Processing
 | |
| ```mermaid
 | |
| graph LR
 | |
|     A[Query] --> B[Query Embedding]
 | |
|     B --> C[Similarity Search]
 | |
|     C --> D[Context Analysis]
 | |
|     D --> E[Result Ranking]
 | |
| ```
 | |
| 
 | |
| ## Optimization Guidelines
 | |
| 
 | |
| ### Embedding Optimization
 | |
| ```python
 | |
| # @embedding_optimization
 | |
| optimization_config = {
 | |
|     "caching": {
 | |
|         "strategy": "least_recently_used",
 | |
|         "max_size": "10GB",
 | |
|         "ttl": "24h"
 | |
|     },
 | |
|     "computation": {
 | |
|         "batch_size": 32,
 | |
|         "precision": "float16",
 | |
|         "device": "cuda"
 | |
|     },
 | |
|     "storage": {
 | |
|         "format": "memory_mapped",
 | |
|         "compression": "lz4",
 | |
|         "indexing": "faiss"
 | |
|     }
 | |
| }
 | |
| ```
 | |
| 
 | |
| ### Performance Tuning
 | |
| ```yaml
 | |
| performance_config:
 | |
|   embedding_generation:
 | |
|     batch_size: 32
 | |
|     max_length: 512
 | |
|     truncation: true
 | |
|   similarity_search:
 | |
|     index_type: "IVFFlat"
 | |
|     nprobe: 16
 | |
|     metric: "cosine"
 | |
|   graph_operations:
 | |
|     max_depth: 3
 | |
|     beam_width: 5
 | |
|     pruning_threshold: 0.5
 | |
| ```
 | |
| 
 | |
| ## Validation Framework
 | |
| 
 | |
| ### Quality Metrics
 | |
| ```python
 | |
| # @quality_metrics
 | |
| def compute_quality_metrics(embeddings: dict) -> dict:
 | |
|     """
 | |
|     Compute quality metrics for embeddings
 | |
|     
 | |
|     Metrics:
 | |
|     1. Coverage
 | |
|     2. Consistency
 | |
|     3. Coherence
 | |
|     4. Discriminative power
 | |
|     """
 | |
|     return {
 | |
|         "coverage": 0.95,
 | |
|         "consistency": 0.92,
 | |
|         "coherence": 0.88,
 | |
|         "discrimination": 0.90
 | |
|     }
 | |
| ```
 | |
| 
 | |
| ### Validation Rules
 | |
| ```python
 | |
| # @validation_rules
 | |
| validation_config = {
 | |
|     "embeddings": {
 | |
|         "dimension_check": True,
 | |
|         "norm_check": True,
 | |
|         "coverage_threshold": 0.9
 | |
|     },
 | |
|     "relationships": {
 | |
|         "symmetry_check": True,
 | |
|         "transitivity_check": True,
 | |
|         "cycle_detection": True
 | |
|     },
 | |
|     "graph": {
 | |
|         "connectivity_check": True,
 | |
|         "consistency_check": True,
 | |
|         "completeness_check": True
 | |
|     }
 | |
| }
 | |
| ```
 | |
| 
 | |
| ## Integration Examples
 | |
| 
 | |
| ### Knowledge Base Integration
 | |
| ```python
 | |
| # Example of knowledge base integration
 | |
| from cognitive_system import SemanticProcessor
 | |
| 
 | |
| processor = SemanticProcessor(config=embedding_config)
 | |
| 
 | |
| # Process document
 | |
| doc_embeddings = processor.process_document(
 | |
|     content=document,
 | |
|     type="concept",
 | |
|     context={"domain": "cognitive_modeling"}
 | |
| )
 | |
| 
 | |
| # Update knowledge graph
 | |
| graph.add_node(
 | |
|     embeddings=doc_embeddings,
 | |
|     relationships=inferred_relationships,
 | |
|     metadata=document_metadata
 | |
| )
 | |
| ```
 | |
| 
 | |
| ### Query Integration
 | |
| ```python
 | |
| # Example of semantic query
 | |
| results = processor.semantic_search(
 | |
|     query="active inference implementation",
 | |
|     filters={
 | |
|         "type": "implementation",
 | |
|         "status": "stable",
 | |
|         "complexity": ["intermediate", "advanced"]
 | |
|     },
 | |
|     ranking={
 | |
|         "relevance": 0.7,
 | |
|         "recency": 0.3
 | |
|     }
 | |
| )
 | |
| ```
 | |
| 
 | |
| ## Related Documentation
 | |
| - [[ai_documentation_style]]
 | |
| - [[knowledge_graph_structure]]
 | |
| - [[embedding_framework]]
 | |
| - [[semantic_search]]
 | |
| 
 | |
| ## References
 | |
| - [[embedding_techniques]]
 | |
| - [[semantic_processing]]
 | |
| - [[graph_algorithms]]
 | |
| - [[optimization_strategies]]  | 
