cognitive/docs/guides/model_implementation.md
Daniel Ari Friedman 6caa1a7cb1 Update
2025-02-07 08:16:25 -08:00

11 KiB

Model Implementation Guide


title: Model Implementation Guide type: guide status: stable created: 2024-02-06 tags:


Overview

This guide provides detailed instructions for implementing cognitive models based on the Active Inference framework. While the knowledge_base/cognitive/cognitive_science provides theoretical foundations, this guide focuses on practical implementation steps.

Model Architecture

Core Components

# @model_architecture
class CognitiveModel:
    """
    Core cognitive model implementation.
    
    Theory: [[knowledge_base/cognitive/cognitive_phenomena#model-architecture|Model Architecture]]
    Patterns: [[docs/guides/implementation_patterns#core-implementation-patterns|Implementation Patterns]]
    """
    def __init__(self):
        # Initialize core components
        self.belief_model = BeliefModel()      # [[belief_updating]]
        self.policy_model = PolicyModel()      # [[action_selection]]
        self.perception_model = PerceptionModel()  # [[perception_system]]
        
        # Initialize state
        self.initialize_state()

State Management

# @state_management
def initialize_state(self):
    """
    Initialize model state.
    
    Theory: [[knowledge_base/cognitive/predictive_processing#state-initialization|State Initialization]]
    Implementation: [[docs/guides/implementation_patterns#state-management|State Management]]
    """
    # Initialize belief states
    self.beliefs = self._initialize_beliefs()
    
    # Initialize action states
    self.policies = self._initialize_policies()
    
    # Initialize perception states
    self.perception = self._initialize_perception()

Implementation Steps

1. Belief System Implementation

# @belief_implementation
class BeliefModel:
    """
    Belief system implementation.
    
    Theory:
        - [[knowledge_base/cognitive/predictive_processing#belief-system|Belief System]]
        - [[knowledge_base/cognitive/free_energy_principle#belief-dynamics|Belief Dynamics]]
    Mathematics:
        - [[knowledge_base/mathematics/bayesian_inference|Bayesian Inference]]
        - [[knowledge_base/mathematics/variational_methods|Variational Methods]]
    API: [[docs/api/api_reference#belief-updating-system|Belief Updating API]]
    """
    def update_beliefs(self, observation: Observation) -> BeliefState:
        """
        Update beliefs based on observation.
        
        Theory:
            - [[knowledge_base/cognitive/free_energy_principle#belief-updating|Belief Updating]]
            - [[knowledge_base/cognitive/predictive_processing#prediction-error|Prediction Error]]
        Mathematics:
            - [[knowledge_base/mathematics/message_passing|Message Passing]]
            - [[knowledge_base/mathematics/gradient_descent|Gradient Descent]]
        Implementation:
            - [[docs/api/matrix_operations#belief-update|Belief Update Operations]]
            - [[docs/api/optimization_methods#belief-optimization|Belief Optimization]]
        """
        # Compute prediction error using precision-weighted differences
        prediction_error = self._compute_prediction_error(
            observation,
            method="precision_weighted"  # [[knowledge_base/mathematics/precision_weighting]]
        )
        
        # Update beliefs using gradient descent on free energy
        updated_beliefs = self._minimize_free_energy(
            prediction_error,
            optimizer="natural_gradient"  # [[knowledge_base/mathematics/natural_gradients]]
        )
        
        return updated_beliefs

2. Policy Implementation

# @policy_implementation
class PolicyModel:
    """
    Policy selection implementation.
    
    Theory:
        - [[knowledge_base/cognitive/active_inference#policy-selection|Policy Selection]]
        - [[knowledge_base/cognitive/free_energy_principle#action-selection|Action Selection]]
    Mathematics:
        - [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]]
        - [[knowledge_base/mathematics/information_theory|Information Theory]]
    API: [[docs/api/api_reference#policy-selection|Policy Selection API]]
    """
    def select_policy(self, beliefs: BeliefState) -> Policy:
        """
        Select optimal policy.
        
        Theory:
            - [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]]
            - [[knowledge_base/cognitive/active_inference#policy-optimization|Policy Optimization]]
        Mathematics:
            - [[knowledge_base/mathematics/path_integral|Path Integral Control]]
            - [[knowledge_base/mathematics/softmax|Softmax Selection]]
        Implementation:
            - [[docs/api/optimization_methods#policy-selection|Policy Selection]]
            - [[docs/api/probability_utils#softmax|Softmax Implementation]]
        """
        # Generate policies using path integral sampling
        policies = self._generate_policies(
            method="path_integral"  # [[knowledge_base/mathematics/path_sampling]]
        )
        
        # Evaluate expected free energy
        policy_values = self._evaluate_policies(
            policies,
            method="expected_free_energy"  # [[knowledge_base/mathematics/expected_free_energy]]
        )
        
        # Select using precision-weighted softmax
        optimal_policy = self._select_optimal_policy(
            policy_values,
            method="precision_softmax"  # [[knowledge_base/mathematics/precision_weighted_selection]]
        )
        
        return optimal_policy

3. Perception Implementation

# @perception_implementation
class PerceptionModel:
    """
    Perception system implementation.
    
    Theory:
        - [[knowledge_base/cognitive/predictive_processing#perception|Perception]]
        - [[knowledge_base/cognitive/free_energy_principle#perceptual-inference|Perceptual Inference]]
    Mathematics:
        - [[knowledge_base/mathematics/hierarchical_inference|Hierarchical Inference]]
        - [[knowledge_base/mathematics/message_passing|Message Passing]]
    API: [[docs/api/api_reference#perception-system|Perception API]]
    """
    def process_observation(self, sensory_input: Input) -> Observation:
        """
        Process sensory input.
        
        Theory:
            - [[knowledge_base/cognitive/predictive_processing#sensory-processing|Sensory Processing]]
            - [[knowledge_base/cognitive/active_inference#perception|Active Inference Perception]]
        Mathematics:
            - [[knowledge_base/mathematics/error_propagation|Error Propagation]]
            - [[knowledge_base/mathematics/precision_weighting|Precision Weighting]]
        Implementation:
            - [[docs/api/matrix_operations#error-computation|Error Computation]]
            - [[docs/api/probability_utils#precision-scaling|Precision Scaling]]
        """
        # Preprocess input using hierarchical processing
        processed_input = self._preprocess_input(
            sensory_input,
            method="hierarchical"  # [[knowledge_base/mathematics/hierarchical_processing]]
        )
        
        # Generate predictions using generative model
        predictions = self._generate_predictions(
            method="top_down"  # [[knowledge_base/cognitive/predictive_processing#top-down-predictions]]
        )
        
        # Compare with predictions using precision-weighted errors
        observation = self._compare_with_predictions(
            processed_input,
            predictions,
            method="precision_weighted"  # [[knowledge_base/mathematics/precision_weighting]]
        )
        
        return observation

Integration Guidelines

1. Component Integration

# @component_integration
def integrate_components(self):
    """
    Integrate model components.
    
    See [[docs/guides/system_integration|System Integration]]
    """
    # Connect belief system
    self._connect_belief_system()
    
    # Connect policy system
    self._connect_policy_system()
    
    # Connect perception system
    self._connect_perception_system()

2. Data Flow

# @data_flow
def process_cycle(self, input_data: Input) -> Action:
    """
    Process single cognitive cycle.
    
    Theory: [[knowledge_base/cognitive/active_inference#cognitive-cycle|Cognitive Cycle]]
    """
    # Process perception
    observation = self.perception_model.process_observation(input_data)
    
    # Update beliefs
    beliefs = self.belief_model.update_beliefs(observation)
    
    # Select policy
    policy = self.policy_model.select_policy(beliefs)
    
    # Get action
    action = policy.get_action()
    
    return action

Validation Framework

1. Model Validation

# @model_validation
def validate_model(self) -> ValidationResult:
    """
    Validate model implementation.
    
    See [[docs/guides/validation_guide|Validation Guide]]
    """
    # Validate components
    component_validation = self._validate_components()
    
    # Validate integration
    integration_validation = self._validate_integration()
    
    # Validate behavior
    behavior_validation = self._validate_behavior()
    
    return ValidationResult(
        component_validation,
        integration_validation,
        behavior_validation
    )

2. Testing Framework

# @testing_framework
def test_model(self) -> TestResults:
    """
    Test model implementation.
    
    See [[docs/guides/testing_guide|Testing Guide]]
    """
    # Run unit tests
    unit_results = self._run_unit_tests()
    
    # Run integration tests
    integration_results = self._run_integration_tests()
    
    # Run system tests
    system_results = self._run_system_tests()
    
    return TestResults(
        unit_results,
        integration_results,
        system_results
    )

Best Practices

1. Implementation Guidelines

2. Performance Optimization

3. Quality Assurance

References