зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 20:26:04 +02:00
11 KiB
11 KiB
Model Implementation Guide
title: Model Implementation Guide type: guide status: stable created: 2024-02-06 tags:
- implementation
- models
- development
- architecture semantic_relations:
- type: implements links:
- type: relates links:
Overview
This guide provides detailed instructions for implementing cognitive models based on the Active Inference framework. While the knowledge_base/cognitive/cognitive_science provides theoretical foundations, this guide focuses on practical implementation steps.
Model Architecture
Core Components
# @model_architecture
class CognitiveModel:
"""
Core cognitive model implementation.
Theory: [[knowledge_base/cognitive/cognitive_phenomena#model-architecture|Model Architecture]]
Patterns: [[docs/guides/implementation_patterns#core-implementation-patterns|Implementation Patterns]]
"""
def __init__(self):
# Initialize core components
self.belief_model = BeliefModel() # [[belief_updating]]
self.policy_model = PolicyModel() # [[action_selection]]
self.perception_model = PerceptionModel() # [[perception_system]]
# Initialize state
self.initialize_state()
State Management
# @state_management
def initialize_state(self):
"""
Initialize model state.
Theory: [[knowledge_base/cognitive/predictive_processing#state-initialization|State Initialization]]
Implementation: [[docs/guides/implementation_patterns#state-management|State Management]]
"""
# Initialize belief states
self.beliefs = self._initialize_beliefs()
# Initialize action states
self.policies = self._initialize_policies()
# Initialize perception states
self.perception = self._initialize_perception()
Implementation Steps
1. Belief System Implementation
# @belief_implementation
class BeliefModel:
"""
Belief system implementation.
Theory:
- [[knowledge_base/cognitive/predictive_processing#belief-system|Belief System]]
- [[knowledge_base/cognitive/free_energy_principle#belief-dynamics|Belief Dynamics]]
Mathematics:
- [[knowledge_base/mathematics/bayesian_inference|Bayesian Inference]]
- [[knowledge_base/mathematics/variational_methods|Variational Methods]]
API: [[docs/api/api_reference#belief-updating-system|Belief Updating API]]
"""
def update_beliefs(self, observation: Observation) -> BeliefState:
"""
Update beliefs based on observation.
Theory:
- [[knowledge_base/cognitive/free_energy_principle#belief-updating|Belief Updating]]
- [[knowledge_base/cognitive/predictive_processing#prediction-error|Prediction Error]]
Mathematics:
- [[knowledge_base/mathematics/message_passing|Message Passing]]
- [[knowledge_base/mathematics/gradient_descent|Gradient Descent]]
Implementation:
- [[docs/api/matrix_operations#belief-update|Belief Update Operations]]
- [[docs/api/optimization_methods#belief-optimization|Belief Optimization]]
"""
# Compute prediction error using precision-weighted differences
prediction_error = self._compute_prediction_error(
observation,
method="precision_weighted" # [[knowledge_base/mathematics/precision_weighting]]
)
# Update beliefs using gradient descent on free energy
updated_beliefs = self._minimize_free_energy(
prediction_error,
optimizer="natural_gradient" # [[knowledge_base/mathematics/natural_gradients]]
)
return updated_beliefs
2. Policy Implementation
# @policy_implementation
class PolicyModel:
"""
Policy selection implementation.
Theory:
- [[knowledge_base/cognitive/active_inference#policy-selection|Policy Selection]]
- [[knowledge_base/cognitive/free_energy_principle#action-selection|Action Selection]]
Mathematics:
- [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]]
- [[knowledge_base/mathematics/information_theory|Information Theory]]
API: [[docs/api/api_reference#policy-selection|Policy Selection API]]
"""
def select_policy(self, beliefs: BeliefState) -> Policy:
"""
Select optimal policy.
Theory:
- [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]]
- [[knowledge_base/cognitive/active_inference#policy-optimization|Policy Optimization]]
Mathematics:
- [[knowledge_base/mathematics/path_integral|Path Integral Control]]
- [[knowledge_base/mathematics/softmax|Softmax Selection]]
Implementation:
- [[docs/api/optimization_methods#policy-selection|Policy Selection]]
- [[docs/api/probability_utils#softmax|Softmax Implementation]]
"""
# Generate policies using path integral sampling
policies = self._generate_policies(
method="path_integral" # [[knowledge_base/mathematics/path_sampling]]
)
# Evaluate expected free energy
policy_values = self._evaluate_policies(
policies,
method="expected_free_energy" # [[knowledge_base/mathematics/expected_free_energy]]
)
# Select using precision-weighted softmax
optimal_policy = self._select_optimal_policy(
policy_values,
method="precision_softmax" # [[knowledge_base/mathematics/precision_weighted_selection]]
)
return optimal_policy
3. Perception Implementation
# @perception_implementation
class PerceptionModel:
"""
Perception system implementation.
Theory:
- [[knowledge_base/cognitive/predictive_processing#perception|Perception]]
- [[knowledge_base/cognitive/free_energy_principle#perceptual-inference|Perceptual Inference]]
Mathematics:
- [[knowledge_base/mathematics/hierarchical_inference|Hierarchical Inference]]
- [[knowledge_base/mathematics/message_passing|Message Passing]]
API: [[docs/api/api_reference#perception-system|Perception API]]
"""
def process_observation(self, sensory_input: Input) -> Observation:
"""
Process sensory input.
Theory:
- [[knowledge_base/cognitive/predictive_processing#sensory-processing|Sensory Processing]]
- [[knowledge_base/cognitive/active_inference#perception|Active Inference Perception]]
Mathematics:
- [[knowledge_base/mathematics/error_propagation|Error Propagation]]
- [[knowledge_base/mathematics/precision_weighting|Precision Weighting]]
Implementation:
- [[docs/api/matrix_operations#error-computation|Error Computation]]
- [[docs/api/probability_utils#precision-scaling|Precision Scaling]]
"""
# Preprocess input using hierarchical processing
processed_input = self._preprocess_input(
sensory_input,
method="hierarchical" # [[knowledge_base/mathematics/hierarchical_processing]]
)
# Generate predictions using generative model
predictions = self._generate_predictions(
method="top_down" # [[knowledge_base/cognitive/predictive_processing#top-down-predictions]]
)
# Compare with predictions using precision-weighted errors
observation = self._compare_with_predictions(
processed_input,
predictions,
method="precision_weighted" # [[knowledge_base/mathematics/precision_weighting]]
)
return observation
Integration Guidelines
1. Component Integration
# @component_integration
def integrate_components(self):
"""
Integrate model components.
See [[docs/guides/system_integration|System Integration]]
"""
# Connect belief system
self._connect_belief_system()
# Connect policy system
self._connect_policy_system()
# Connect perception system
self._connect_perception_system()
2. Data Flow
# @data_flow
def process_cycle(self, input_data: Input) -> Action:
"""
Process single cognitive cycle.
Theory: [[knowledge_base/cognitive/active_inference#cognitive-cycle|Cognitive Cycle]]
"""
# Process perception
observation = self.perception_model.process_observation(input_data)
# Update beliefs
beliefs = self.belief_model.update_beliefs(observation)
# Select policy
policy = self.policy_model.select_policy(beliefs)
# Get action
action = policy.get_action()
return action
Validation Framework
1. Model Validation
# @model_validation
def validate_model(self) -> ValidationResult:
"""
Validate model implementation.
See [[docs/guides/validation_guide|Validation Guide]]
"""
# Validate components
component_validation = self._validate_components()
# Validate integration
integration_validation = self._validate_integration()
# Validate behavior
behavior_validation = self._validate_behavior()
return ValidationResult(
component_validation,
integration_validation,
behavior_validation
)
2. Testing Framework
# @testing_framework
def test_model(self) -> TestResults:
"""
Test model implementation.
See [[docs/guides/testing_guide|Testing Guide]]
"""
# Run unit tests
unit_results = self._run_unit_tests()
# Run integration tests
integration_results = self._run_integration_tests()
# Run system tests
system_results = self._run_system_tests()
return TestResults(
unit_results,
integration_results,
system_results
)
Best Practices
1. Implementation Guidelines
- Follow docs/guides/implementation_patterns
- Use docs/guides/code_organization
- Apply docs/guides/documentation_standards
2. Performance Optimization
- Implement docs/guides/performance_optimization
- Monitor docs/guides/performance_metrics
- Profile using docs/guides/profiling_guide
3. Quality Assurance
- Follow docs/guides/testing_guide
- Use docs/guides/validation_framework
- Review with docs/guides/code_review
Related Documentation
- knowledge_base/cognitive/cognitive_science
- docs/api/api_reference
- docs/guides/implementation_patterns
- docs/guides/system_integration