зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
4.2 KiB
4.2 KiB
AI-Oriented Concept Template
title: Concept Name type: ai_concept status: draft created: YYYY-MM-DD updated: YYYY-MM-DD complexity: [basic|intermediate|advanced] processing_priority: 1-5 semantic_relations:
- type: prerequisite links: []
- type: implements links: []
- type: extends links: [] knowledge_graph: centrality: 0.0 density: 0.0 cluster_coefficient: 0.0 embeddings: model: sentence-transformers/all-mpnet-base-v2 vector: [] tags:
- concept
- category
- domain validation: completeness: 0.0 consistency: 0.0 coherence: 0.0
#BEGIN_CONCEPT_DEFINITION Brief, precise definition optimized for machine processing and semantic understanding. #END_CONCEPT_DEFINITION
Formal Specification
Mathematical Foundation
# Mathematical formalization of the concept
Logical Framework
% Logical representation
concept(X) :- property(X), relationship(X, Y).
Computational Model
class ConceptModel:
"""Computational representation of the concept"""
def __init__(self):
self.properties = {}
self.relationships = []
Knowledge Integration
Ontological Position
ontology:
is_a: []
part_of: []
related_to: []
implements: []
Semantic Relationships
- Prerequisites: concept1, concept2
- Dependencies: dependency1, dependency2
- Applications: application1, application2
Context Embedding
context:
domain: []
scope: []
constraints: []
Implementation Framework
Core Components
# @component_specification
{
"interfaces": [],
"behaviors": [],
"constraints": []
}
Integration Points
# @integration_specification
{
"inputs": [],
"outputs": [],
"protocols": []
}
Validation Criteria
# @validation_specification
{
"invariants": [],
"assertions": [],
"tests": []
}
Machine Learning Aspects
Training Considerations
training:
data_requirements:
- type: structured
source: [[data_source1]]
- type: unstructured
source: [[data_source2]]
model_architecture:
- type: neural_network
specification: [[architecture_spec]]
Feature Space
# @feature_specification
{
"dimensions": [],
"representations": [],
"transformations": []
}
Performance Metrics
# @performance_metrics
{
"accuracy": 0.0,
"precision": 0.0,
"recall": 0.0,
"f1_score": 0.0
}
Processing Instructions
Priority Levels
processing:
critical_path: boolean
dependency_order: integer
parallel_processing: boolean
Resource Requirements
resources:
memory: string
computation: string
time_complexity: string
Optimization Hints
# @optimization_hints
{
"caching_strategy": "",
"parallelization": "",
"approximation": ""
}
Validation Framework
Consistency Checks
# @consistency_validation
def validate_concept():
"""
Validation steps:
1. Check internal consistency
2. Verify relationships
3. Validate implementations
"""
pass
Completeness Metrics
completeness:
definition: 0.0
relationships: 0.0
implementations: 0.0
validations: 0.0
Quality Assurance
# @quality_metrics
{
"formal_correctness": 0.0,
"semantic_clarity": 0.0,
"implementation_coverage": 0.0
}
Examples
Minimal Example
# @minimal_example
def demonstrate_concept():
"""Minimal working example of the concept"""
pass
Complete Implementation
# @complete_example
class ConceptImplementation:
"""Full implementation with all features"""
pass
Integration Example
# @integration_example
def integrate_with_system():
"""Example of system integration"""
pass
Related Concepts
- concept1 {type: prerequisite, weight: 0.8}
- concept2 {type: implements, confidence: 0.9}
- concept3 {type: extends, similarity: 0.7}
References
#BEGIN_METADATA_VALIDATION Last validated: YYYY-MM-DD Validation score: 0.0 Coverage: 0.0 #END_METADATA_VALIDATION