зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 20:26:04 +02:00
4.3 KiB
4.3 KiB
Project Structure
Overview
This document outlines the comprehensive organization of the cognitive modeling framework, detailing the purpose and relationships between different components.
Core Directories
📁 knowledge_base/
Core knowledge organization and theoretical foundations
Cognitive Domain
cognitive/- Core cognitive conceptsactive_inference/- Active Inference frameworkbelief_updating/- Belief update mechanismspolicy_selection/- Action selection algorithmsfree_energy/- Free Energy calculationspredictive_processing/- Predictive processing theory
Mathematical Domain
mathematics/- Mathematical foundationsprobability/- Probability theoryinformation_theory/- Information theoretic conceptsoptimization/- Optimization methodsdynamical_systems/- System dynamics
Implementation Domain
implementations/- Concrete examplesnavigation/- Navigation tasksforaging/- Resource foragingcoordination/- Multi-agent coordinationlearning/- Learning scenarios
📁 src/
Source code implementation
Core Components
models/- Core modeling componentsactive_inference/- Active Inference implementationgenerative_model.pybelief_updater.pypolicy_selector.py
state_estimation/- State estimation toolsoptimization/- Optimization algorithms
Utility Functions
utils/- Utility functionsvisualization/- Visualization toolsstate_space.pybelief_plots.pynetwork_viz.py
validation/- Validation utilitiesmatrix_validation.pymodel_checks.py
data_processing/- Data handling
Analysis Tools
analysis/- Analysis toolsmetrics/- Performance metricsnetwork_analysis/- Network analysissimulations/- Simulation frameworks
📁 tests/
Comprehensive test suite
Test Categories
unit/- Unit teststest_matrix_ops.pytest_belief_updates.pytest_policy_selection.py
integration/- Integration teststest_agent_environment.pytest_learning_scenarios.py
visualization/- Visualization teststest_state_plots.pytest_network_viz.py
📁 docs/
Project documentation
Documentation Types
theory/- Theoretical foundationsactive_inference.mdfree_energy.mdpredictive_processing.md
implementation/- Implementation detailsapi_reference.mdclass_documentation.mdfunction_specifications.md
examples/- Usage examplesquickstart.mdtutorials/case_studies/
📁 templates/
Reusable templates and patterns
Template Categories
concepts/- Concept templatescognitive_template.mdmathematical_template.mdimplementation_template.md
documentation/- Documentation templatesapi_template.mdexample_template.mdtutorial_template.md
File Organization
Naming Conventions
- Use lowercase with underscores
- Include category prefixes
- Be descriptive and concise
File Structure
- Include header metadata
- Follow consistent organization
- Maintain clear dependencies
Version Control
- Use meaningful commits
- Group related changes
- Track dependencies
Development Workflow
1. Knowledge Development
- Create concept documentation
- Establish relationships
- Validate theoretical consistency
- Update dependencies
2. Implementation
- Write core functionality
- Add unit tests
- Create integration tests
- Document API
3. Validation
- Run test suite
- Check coverage
- Validate relationships
- Review documentation
4. Deployment
- Update version
- Generate documentation
- Create release notes
- Deploy changes
Quality Assurance
Documentation Standards
- Complete API documentation
- Clear usage examples
- Comprehensive guides
- Up-to-date references
Testing Requirements
- High test coverage
- Integration testing
- Property-based tests
- Performance benchmarks
Code Quality
- Follow style guide
- Use type hints
- Write clear comments
- Maintain modularity
References
Documentation
- Project style guide
- API documentation
- Testing guide
- Contribution guide
Dependencies
- requirements.txt
- setup.py
- environment.yml
- Dockerfile