зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 12:16:04 +02:00
2.9 KiB
2.9 KiB
InferAnt Stream 10: Active Inference - Modeling, Learning, and Exploration
Stream Information
- Platform: GitHub Live
- Repository: https://github.com/docxology/cognitive
- Tools:
- Obsidian: https://obsidian.md/
- CodeViz: https://codeviz.ai/
Agenda
2. Theoretical Foundations
- Active Inference Framework
- Free Energy Principle review
- Generative models
- Belief updating
- Policy selection
- Learning and Exploration
- Epistemic value
- Expected free energy
- Exploration-exploitation balance
- Information gain
3. Implementation Architecture
- POMDP (simple and generic), Ants, Biofirms
- CodeViz and More.
- Core Components
- GenerativeModel class
- BeliefUpdater class
- PolicySelector class
- FreeEnergyCalculator class
- Matrix Requirements
- A matrix (observation mapping)
- B matrix (transition dynamics)
- C matrix (preference encoding)
- D matrix (prior beliefs)
- E matrix (policy specification)
4. Code Development
- Base Implementation
- Matrix initialization and validation
- Belief updating mechanisms
- Policy evaluation functions
- Action selection methods
- Testing Framework
- Unit tests setup
- Integration tests
- Visualization tests
- Property-based tests
5. Practical Applications
- Example Scenarios
- Simple navigation task
- Multi-agent coordination
- Resource foraging
- Pattern learning
- Visualization Methods
- State space plots
- Belief evolution
- Free energy landscapes
- Policy evaluation
6. Future Directions
- Next Steps
- Extended functionality
- Performance optimization
- Additional test cases
- Documentation improvements
- Community Engagement
- Contribution guidelines
- Issue tracking
- Feature requests
- Collaboration opportunities
Repository Organization
cognitive/
├── src/
│ ├── active_inference/
│ │ ├── __init__.py
│ │ ├── generative_model.py
│ │ ├── belief_updater.py
│ │ └── policy_selector.py
│ └── utils/
│ ├── visualization.py
│ └── validation.py
├── tests/
│ ├── unit/
│ ├── integration/
│ └── visualization/
├── docs/
│ ├── theory/
│ ├── implementation/
│ └── examples/
└── examples/
├── navigation/
├── foraging/
└── pattern_learning/
Next Steps
- Implement core classes and functions
- Develop comprehensive test suite
- Create visualization utilities
- Document API and examples
- Integrate with existing codebase
- Establish contribution workflow
References
- Free Energy Principle foundations
- Active Inference implementations
- Related cognitive architectures
- Relevant research papers
Notes
- Focus on modular, reusable components
- Maintain clear documentation
- Ensure test coverage
- Consider performance optimization
- Enable easy extension