зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 20:26:04 +02:00
6.7 KiB
6.7 KiB
AI Semantic Processing Guide
title: AI Semantic Processing Guide type: guide status: stable created: 2024-02-06 tags:
- semantic
- embeddings
- ai
- processing complexity: advanced processing_priority: 1 semantic_relations:
- type: implements links: machine_readability
- type: extends links: knowledge_organization embeddings: model: sentence-transformers/all-mpnet-base-v2 dimensions: 768
Overview
This guide defines semantic processing standards and embedding strategies for hyper-intelligent agents to effectively process and understand the knowledge base.
Semantic Processing Framework
Text Embeddings
# @embedding_specification
embedding_config = {
"models": {
"text": "sentence-transformers/all-mpnet-base-v2",
"code": "microsoft/codebert-base",
"graph": "knowledge-graph-bert"
},
"dimensions": {
"text": 768,
"code": 768,
"graph": 512
},
"pooling": "mean",
"normalization": "l2"
}
Semantic Markers
semantic_markers:
concept:
prefix: "#CONCEPT:"
weight: 1.0
embedding_type: "text"
implementation:
prefix: "#IMPL:"
weight: 0.8
embedding_type: "code"
relationship:
prefix: "#REL:"
weight: 0.9
embedding_type: "graph"
Knowledge Graph Integration
Graph Structure
# @graph_specification
class KnowledgeGraphNode:
"""
Knowledge graph node with semantic embeddings
"""
def __init__(self):
self.embeddings = {
"text": np.ndarray, # Text embedding
"code": np.ndarray, # Code embedding
"graph": np.ndarray # Graph structure embedding
}
self.relationships = [] # Typed edges
self.metadata = {} # Node metadata
Relationship Types
relationship_types:
hierarchical:
- is_a: 0.9 # Type hierarchy
- part_of: 0.8 # Composition
- implements: 0.7 # Implementation
semantic:
- similar_to: 0.6 # Semantic similarity
- related_to: 0.5 # General relation
- references: 0.4 # Reference relation
temporal:
- precedes: 0.8 # Temporal ordering
- depends_on: 0.7 # Dependency
- evolves_to: 0.6 # Evolution
Processing Instructions
Embedding Generation
# @embedding_generation
def generate_embeddings(content: str, type: str) -> dict:
"""
Generate embeddings for content
Processing steps:
1. Preprocess content based on type
2. Select appropriate model
3. Generate embeddings
4. Post-process and validate
"""
pass
Semantic Analysis
# @semantic_analysis
def analyze_semantics(node: KnowledgeGraphNode) -> dict:
"""
Analyze semantic content
Analysis steps:
1. Extract key concepts
2. Identify relationships
3. Compute similarities
4. Generate insights
"""
pass
Query Processing
Semantic Search
# @semantic_search
def semantic_search(query: str, context: dict) -> list:
"""
Semantic search implementation
Search process:
1. Embed query
2. Compute similarities
3. Filter by context
4. Rank results
"""
pass
Relationship Inference
# @relationship_inference
def infer_relationships(source: KnowledgeGraphNode, target: KnowledgeGraphNode) -> list:
"""
Infer relationships between nodes
Inference steps:
1. Compare embeddings
2. Analyze context
3. Apply inference rules
4. Validate relationships
"""
pass
Processing Pipeline
Document Processing
graph TD
A[Raw Document] --> B[Text Extraction]
B --> C[Semantic Parsing]
C --> D[Embedding Generation]
D --> E[Graph Integration]
E --> F[Validation]
Query Processing
graph LR
A[Query] --> B[Query Embedding]
B --> C[Similarity Search]
C --> D[Context Analysis]
D --> E[Result Ranking]
Optimization Guidelines
Embedding Optimization
# @embedding_optimization
optimization_config = {
"caching": {
"strategy": "least_recently_used",
"max_size": "10GB",
"ttl": "24h"
},
"computation": {
"batch_size": 32,
"precision": "float16",
"device": "cuda"
},
"storage": {
"format": "memory_mapped",
"compression": "lz4",
"indexing": "faiss"
}
}
Performance Tuning
performance_config:
embedding_generation:
batch_size: 32
max_length: 512
truncation: true
similarity_search:
index_type: "IVFFlat"
nprobe: 16
metric: "cosine"
graph_operations:
max_depth: 3
beam_width: 5
pruning_threshold: 0.5
Validation Framework
Quality Metrics
# @quality_metrics
def compute_quality_metrics(embeddings: dict) -> dict:
"""
Compute quality metrics for embeddings
Metrics:
1. Coverage
2. Consistency
3. Coherence
4. Discriminative power
"""
return {
"coverage": 0.95,
"consistency": 0.92,
"coherence": 0.88,
"discrimination": 0.90
}
Validation Rules
# @validation_rules
validation_config = {
"embeddings": {
"dimension_check": True,
"norm_check": True,
"coverage_threshold": 0.9
},
"relationships": {
"symmetry_check": True,
"transitivity_check": True,
"cycle_detection": True
},
"graph": {
"connectivity_check": True,
"consistency_check": True,
"completeness_check": True
}
}
Integration Examples
Knowledge Base Integration
# Example of knowledge base integration
from cognitive_system import SemanticProcessor
processor = SemanticProcessor(config=embedding_config)
# Process document
doc_embeddings = processor.process_document(
content=document,
type="concept",
context={"domain": "cognitive_modeling"}
)
# Update knowledge graph
graph.add_node(
embeddings=doc_embeddings,
relationships=inferred_relationships,
metadata=document_metadata
)
Query Integration
# Example of semantic query
results = processor.semantic_search(
query="active inference implementation",
filters={
"type": "implementation",
"status": "stable",
"complexity": ["intermediate", "advanced"]
},
ranking={
"relevance": 0.7,
"recency": 0.3
}
)