зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 05:06:04 +02:00 
			
		
		
		
	
		
			
				
	
	
	
		
			6.8 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			6.8 KiB
		
	
	
	
	
	
	
	
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | |||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Active Inference in Neuroscience Learning Path | learning_path | stable | 2024-03-15 | advanced | 1 | 
 | 
 | 
Active Inference in Neuroscience Learning Path
Overview
This specialized path focuses on applying Active Inference to understand brain function, neural dynamics, and cognitive processes. It integrates neuroscientific theory with computational modeling.
Prerequisites
1. Neuroscience Foundations (4 weeks)
- 
Neural Systems - Neuroanatomy
- Neural circuits
- Synaptic transmission
- Brain networks
 
- 
Brain Dynamics - Neural oscillations
- Population dynamics
- Network synchronization
- Neuroplasticity
 
- 
Cognitive Neuroscience - Perception
- Action
- Learning
- Memory
 
- 
Research Methods - Brain imaging
- Electrophysiology
- Data analysis
- Experimental design
 
2. Technical Skills (2 weeks)
- Computational Tools
- Python/MATLAB
- Neural data analysis
- Statistical methods
- Visualization
 
Core Learning Path
1. Neural Implementations (4 weeks)
Week 1-2: Neural Message Passing
class NeuralMessagePassing:
    def __init__(self,
                 n_regions: int,
                 n_features: int):
        """Initialize neural message passing network."""
        self.regions = nn.ModuleList([
            BrainRegion(n_features) for _ in range(n_regions)
        ])
        self.connections = self._initialize_connections()
        
    def forward(self, 
                sensory_input: torch.Tensor) -> Dict[str, torch.Tensor]:
        """Propagate predictions and errors through network."""
        predictions = {}
        errors = {}
        
        # Bottom-up pass
        for region in self.regions:
            pred = region.generate_prediction()
            error = region.compute_error(sensory_input)
            predictions[region.name] = pred
            errors[region.name] = error
            
        return {'predictions': predictions, 'errors': errors}
Week 3-4: Neural Dynamics
class NeuralDynamics:
    def __init__(self,
                 connectivity: torch.Tensor,
                 time_constants: torch.Tensor):
        """Initialize neural dynamics model."""
        self.connectivity = connectivity
        self.tau = time_constants
        self.state = torch.zeros(connectivity.shape[0])
        
    def update(self,
              input_current: torch.Tensor,
              dt: float = 0.001) -> torch.Tensor:
        """Update neural state."""
        dxdt = (-self.state + self.connectivity @ self.state + input_current) / self.tau
        self.state += dt * dxdt
        return self.state
2. Brain Systems (6 weeks)
Week 1-2: Sensory Systems
- Visual Processing
- Auditory Processing
- Somatosensory Processing
- Multisensory Integration
Week 3-4: Motor Systems
- Motor Planning
- Action Selection
- Movement Control
- Sensorimotor Integration
Week 5-6: Cognitive Systems
- Working Memory
- Decision Making
- Learning and Plasticity
- Executive Control
3. Clinical Applications (4 weeks)
Week 1-2: Neurological Disorders
class DisorderModel:
    def __init__(self,
                 disorder_params: Dict[str, float]):
        """Initialize disorder model."""
        self.params = disorder_params
        self.baseline = self._establish_baseline()
        
    def simulate_pathology(self,
                         brain_state: torch.Tensor) -> torch.Tensor:
        """Simulate disorder effects on brain state."""
        affected_state = self.apply_disorder_effects(brain_state)
        return affected_state
Week 3-4: Therapeutic Interventions
- Treatment Design
- Intervention Modeling
- Outcome Prediction
- Personalized Medicine
4. Research Methods (4 weeks)
Week 1-2: Experimental Design
class NeuroimagingExperiment:
    def __init__(self,
                 paradigm: str,
                 conditions: List[str]):
        """Initialize neuroimaging experiment."""
        self.paradigm = paradigm
        self.conditions = conditions
        self.design_matrix = self._create_design_matrix()
        
    def run_experiment(self,
                      subject: Subject) -> Dict[str, np.ndarray]:
        """Run experimental paradigm."""
        data = {}
        for condition in self.conditions:
            response = self.present_stimulus(subject, condition)
            data[condition] = self.record_brain_activity(response)
        return data
Week 3-4: Data Analysis
- Neural Data Processing
- Statistical Analysis
- Model Comparison
- Results Interpretation
Projects
Clinical Projects
- 
Disorder Modeling - Schizophrenia
- Parkinson's Disease
- Depression
- Anxiety
 
- 
Treatment Optimization - Drug Effects
- Brain Stimulation
- Behavioral Interventions
- Personalized Medicine
 
Research Projects
- 
Neural Mechanisms - Perception Studies
- Action Understanding
- Learning Experiments
- Decision Making
 
- 
Clinical Applications - Biomarker Development
- Treatment Response
- Disease Progression
- Intervention Design
 
Assessment
Knowledge Assessment
- 
Theoretical Understanding - Neural Mechanisms
- Clinical Applications
- Research Methods
- Data Analysis
 
- 
Practical Skills - Experimental Design
- Data Collection
- Analysis Methods
- Result Interpretation
 
Final Projects
- 
Research Project - Experimental Design
- Data Collection
- Analysis
- Publication
 
- 
Clinical Application - Patient Assessment
- Treatment Design
- Outcome Prediction
- Validation Study
 
Resources
Scientific Resources
- 
Research Papers - Foundational Papers
- Clinical Studies
- Methods Papers
- Reviews
 
- 
Books - Neuroscience
- Clinical Applications
- Research Methods
- Data Analysis
 
Technical Resources
- 
Software Tools - Analysis Packages
- Imaging Tools
- Statistical Software
- Visualization Tools
 
- 
Data Resources - Brain Databases
- Clinical Data
- Reference Datasets
- Analysis Pipelines
 
