зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-30 20:56:04 +02:00 
			
		
		
		
	
		
			
				
	
	
	
		
			6.7 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			6.7 KiB
		
	
	
	
	
	
	
	
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | |||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Active Inference in Quantum Intelligence Learning Path | learning_path | stable | 2024-03-15 | advanced | 1 | 
 | 
 | 
Active Inference in Quantum Intelligence Learning Path
Overview
This specialized path focuses on applying Active Inference in quantum computational systems, exploring quantum advantages in intelligence and cognition. It integrates quantum computing, quantum information theory, and quantum cognitive architectures.
Prerequisites
1. Quantum Foundations (4 weeks)
- 
Quantum Computing - Quantum mechanics
- Quantum circuits
- Quantum algorithms
- Quantum error correction
 
- 
Quantum Information - Quantum states
- Quantum entanglement
- Quantum channels
- Quantum measurements
 
- 
Quantum Cognition - Quantum decision theory
- Quantum probability
- Quantum memory
- Quantum learning
 
- 
Mathematical Foundations - Linear algebra
- Complex analysis
- Tensor networks
- Information theory
 
2. Technical Skills (2 weeks)
- Quantum Tools
- Qiskit/Cirq
- Quantum simulators
- Quantum debuggers
- Quantum visualization
 
Core Learning Path
1. Quantum Intelligence Modeling (4 weeks)
Week 1-2: Quantum State Inference
class QuantumStateEstimator:
    def __init__(self,
                 n_qubits: int,
                 measurement_basis: List[str]):
        """Initialize quantum state estimator."""
        self.n_qubits = n_qubits
        self.quantum_circuit = QuantumCircuit(n_qubits)
        self.measurement_basis = measurement_basis
        
    def estimate_state(self,
                      measurements: torch.Tensor) -> QuantumState:
        """Estimate quantum state from measurements."""
        density_matrix = self._reconstruct_state(measurements)
        return self._apply_quantum_inference(density_matrix)
Week 3-4: Quantum Decision Making
class QuantumDecisionMaker:
    def __init__(self,
                 action_space: QuantumSpace,
                 utility_operator: QuantumOperator):
        """Initialize quantum decision maker."""
        self.action_space = action_space
        self.utility = utility_operator
        self.quantum_policy = QuantumPolicy()
        
    def select_action(self,
                     quantum_state: QuantumState,
                     uncertainty: QuantumUncertainty) -> QuantumAction:
        """Select quantum action under uncertainty."""
        superposition = self._create_action_superposition()
        measured_action = self._measure_optimal_action(superposition)
        return self._collapse_to_classical_action(measured_action)
2. Quantum Applications (6 weeks)
Week 1-2: Quantum Perception
- Quantum sensing
- Quantum measurement
- Quantum state tomography
- Quantum error correction
Week 3-4: Quantum Learning
- Quantum neural networks
- Quantum reinforcement learning
- Quantum Bayesian inference
- Quantum optimization
Week 5-6: Quantum Cognition
- Quantum memory
- Quantum decision theory
- Quantum consciousness
- Quantum social choice
3. Quantum Intelligence (4 weeks)
Week 1-2: Quantum Advantage
class QuantumAdvantage:
    def __init__(self,
                 classical_system: ClassicalSystem,
                 quantum_system: QuantumSystem):
        """Initialize quantum advantage analysis."""
        self.classical = classical_system
        self.quantum = quantum_system
        self.comparator = SystemComparator()
        
    def analyze_advantage(self,
                         problem_instance: Problem) -> AdvantageMetrics:
        """Analyze quantum advantage over classical."""
        classical_performance = self.classical.solve(problem_instance)
        quantum_performance = self.quantum.solve(problem_instance)
        return self.comparator.compute_advantage(
            classical_performance, quantum_performance
        )
Week 3-4: Quantum Architectures
- Quantum circuits
- Quantum algorithms
- Quantum error mitigation
- Quantum communication
4. Advanced Topics (4 weeks)
Week 1-2: Quantum-Classical Integration
class QuantumClassicalHybrid:
    def __init__(self,
                 quantum_processor: QuantumProcessor,
                 classical_processor: ClassicalProcessor):
        """Initialize hybrid quantum-classical system."""
        self.quantum = quantum_processor
        self.classical = classical_processor
        self.interface = QuantumClassicalInterface()
        
    def hybrid_computation(self,
                         problem: HybridProblem) -> Solution:
        """Perform hybrid quantum-classical computation."""
        quantum_part = self.quantum.process(problem.quantum_component)
        classical_part = self.classical.process(problem.classical_component)
        return self.interface.combine_results(quantum_part, classical_part)
Week 3-4: Future Quantum Intelligence
- Quantum supremacy
- Post-quantum computing
- Quantum internet
- Quantum AGI
Projects
Quantum Projects
- 
Quantum Implementation - Quantum circuits
- Quantum algorithms
- Error correction
- State preparation
 
- 
Quantum Applications - Quantum sensing
- Quantum learning
- Quantum optimization
- Quantum simulation
 
Advanced Projects
- 
Quantum Intelligence - Quantum advantage
- Hybrid systems
- Quantum memory
- Quantum cognition
 
- 
Quantum Future - Quantum internet
- Quantum security
- Quantum communication
- Quantum AGI
 
Resources
Academic Resources
- 
Research Papers - Quantum Computing
- Quantum Information
- Quantum Cognition
- Quantum Intelligence
 
- 
Books - Quantum Mechanics
- Quantum Computing
- Quantum Information
- Quantum Algorithms
 
Technical Resources
- 
Software Tools - Quantum SDKs
- Quantum Simulators
- Quantum Debuggers
- Visualization Tools
 
- 
Hardware Resources - Quantum Processors
- Quantum Computers
- Quantum Networks
- Quantum Sensors
 
