зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 20:56:04 +02:00
7.4 KiB
7.4 KiB
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | |||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Active Inference in Robotics Learning Path | learning_path | stable | 2024-03-15 | advanced | 1 |
|
|
Active Inference in Robotics Learning Path
Overview
This specialized path focuses on applying Active Inference to robotics and autonomous systems, integrating perception, control, and learning for robust robotic behavior.
Prerequisites
1. Robotics Foundations (4 weeks)
-
Robot Kinematics
- Forward kinematics
- Inverse kinematics
- Jacobians
- Dynamics
-
Control Theory
- State space control
- Feedback control
- Optimal control
- Adaptive control
-
Perception Systems
- Sensor processing
- Computer vision
- State estimation
- Sensor fusion
-
Planning and Navigation
- Path planning
- Motion planning
- SLAM
- Obstacle avoidance
2. Technical Skills (2 weeks)
- Programming Tools
- Python/C++
- ROS/ROS2
- Simulation environments
- Hardware interfaces
Core Learning Path
1. Robot Implementation (4 weeks)
Week 1-2: Robot State Estimation
class RobotStateEstimator:
def __init__(self,
state_dim: int,
sensor_dim: int):
"""Initialize robot state estimator."""
self.state_model = StateTransitionModel(state_dim)
self.sensor_model = SensorModel(state_dim, sensor_dim)
self.state = torch.zeros(state_dim)
def estimate_state(self,
sensor_data: torch.Tensor,
action: torch.Tensor) -> torch.Tensor:
"""Estimate robot state from sensor data."""
# Prediction step
state_pred = self.state_model(self.state, action)
# Update step
sensor_pred = self.sensor_model(state_pred)
error = sensor_data - sensor_pred
# State correction
self.state = state_pred + self.compute_update(error)
return self.state
Week 3-4: Action Generation
class ActiveInferenceController:
def __init__(self,
action_dim: int,
goal_dim: int):
"""Initialize active inference controller."""
self.policy_network = PolicyNetwork(action_dim)
self.goal_prior = GoalPrior(goal_dim)
def select_action(self,
current_state: torch.Tensor,
goal_state: torch.Tensor) -> torch.Tensor:
"""Select action using active inference."""
# Compute expected free energy for policies
policies = self.policy_network.generate_policies()
G = torch.zeros(len(policies))
for i, policy in enumerate(policies):
# Simulate policy
predicted_states = self.simulate_policy(current_state, policy)
# Compute expected free energy
G[i] = self.compute_expected_free_energy(
predicted_states, goal_state
)
# Select policy with lowest expected free energy
best_policy = policies[torch.argmin(G)]
return best_policy[0] # Return first action
2. Robot Systems (6 weeks)
Week 1-2: Perception Systems
- Visual Processing
- Tactile Sensing
- Force Sensing
- Multimodal Integration
Week 3-4: Control Systems
- Motor Control
- Force Control
- Impedance Control
- Whole-body Control
Week 5-6: Learning Systems
- Skill Learning
- Task Learning
- Adaptation
- Transfer Learning
3. Applications (4 weeks)
Week 1-2: Manipulation Tasks
class ManipulationTask:
def __init__(self,
robot: Robot,
environment: Environment):
"""Initialize manipulation task."""
self.robot = robot
self.env = environment
self.planner = TaskPlanner()
def execute_task(self,
task_spec: Dict[str, Any]) -> bool:
"""Execute manipulation task."""
# Generate task plan
plan = self.planner.plan_task(task_spec)
# Execute actions
for action in plan:
success = self.robot.execute_action(action)
if not success:
return self.handle_failure(action)
return self.verify_task_completion(task_spec)
Week 3-4: Navigation Tasks
- Path Planning
- Obstacle Avoidance
- SLAM
- Multi-robot Coordination
4. Advanced Topics (4 weeks)
Week 1-2: Human-Robot Interaction
class HumanRobotInteraction:
def __init__(self,
robot: Robot,
human_model: HumanModel):
"""Initialize human-robot interaction."""
self.robot = robot
self.human = human_model
self.interaction_model = InteractionModel()
def adapt_behavior(self,
human_state: torch.Tensor) -> torch.Tensor:
"""Adapt robot behavior to human."""
# Infer human intention
intention = self.human.infer_intention(human_state)
# Generate adaptive behavior
robot_action = self.interaction_model.generate_action(
self.robot.state, intention
)
return robot_action
Week 3-4: Learning and Adaptation
- Online Learning
- Adaptive Control
- Robust Behavior
- Safety Constraints
Projects
Manipulation Projects
-
Object Manipulation
- Grasping
- Assembly
- Tool Use
- Dexterous Manipulation
-
Task Learning
- Skill Acquisition
- Task Adaptation
- Failure Recovery
- Generalization
Navigation Projects
-
Mobile Robotics
- Indoor Navigation
- Outdoor Exploration
- Dynamic Environments
- Multi-robot Systems
-
Interactive Tasks
- Human Collaboration
- Social Navigation
- Gesture Recognition
- Natural Interfaces
Assessment
Technical Assessment
-
System Implementation
- Perception Systems
- Control Systems
- Learning Systems
- Integration
-
Performance Evaluation
- Task Success
- Robustness
- Efficiency
- Safety
Final Projects
-
Research Project
- Novel Algorithm
- System Integration
- Experimental Validation
- Documentation
-
Applied Project
- Real Robot Implementation
- Task Demonstration
- Performance Analysis
- User Study
Resources
Technical Resources
-
Software Tools
- ROS/ROS2
- Simulation Environments
- Control Libraries
- Vision Libraries
-
Hardware Platforms
- Robot Arms
- Mobile Platforms
- Sensors
- Computing Systems
Learning Resources
-
Documentation
- API References
- Tutorials
- Example Code
- Best Practices
-
Research Papers
- Core Methods
- Applications
- Case Studies
- Benchmarks