cognitive/docs/guides/linking_analysis.md
Daniel Ari Friedman 6caa1a7cb1 Update
2025-02-07 08:16:25 -08:00

232 строки
5.4 KiB
Markdown

# Documentation Linking Analysis
---
title: Documentation Linking Analysis
type: guide
status: stable
created: 2024-02-06
tags:
- linking
- validation
- analysis
- documentation
semantic_relations:
- type: implements
links: [[obsidian_linking]]
- type: extends
links: [[ai_validation_framework]]
---
## Overview
This guide analyzes the current linking patterns and provides validation frameworks for maintaining high-quality documentation relationships.
## Link Pattern Analysis
### Core Link Types
```yaml
link_types:
hierarchical:
- parent_child: # Concept hierarchies
pattern: "[[parent]] -> [[child]]"
validation: "bidirectional"
- implementation: # Concept to implementation
pattern: "[[concept]] -> [[implementation]]"
validation: "traceable"
- documentation: # Documentation relationships
pattern: "[[guide]] -> [[reference]]"
validation: "consistent"
semantic:
- prerequisite: # Required knowledge
pattern: "[[prereq]] -> [[concept]]"
confidence: 0.8
- related: # Related concepts
pattern: "[[concept_a]] <-> [[concept_b]]"
similarity: 0.7
- extends: # Extension relationships
pattern: "[[base]] -> [[extension]]"
validation: "complete"
```
### Link Categories
#### Knowledge Organization
```python
# @knowledge_links
knowledge_structure = {
"concepts": {
"required": ["parent", "children", "implementations"],
"optional": ["related", "examples", "references"]
},
"implementations": {
"required": ["concept", "tests", "documentation"],
"optional": ["examples", "extensions", "optimizations"]
},
"documentation": {
"required": ["overview", "details", "references"],
"optional": ["examples", "tutorials", "guides"]
}
}
```
#### Research Integration
```python
# @research_links
research_structure = {
"papers": {
"required": ["methodology", "results", "references"],
"optional": ["data", "code", "supplements"]
},
"experiments": {
"required": ["protocol", "data", "analysis"],
"optional": ["code", "results", "visualizations"]
},
"results": {
"required": ["data", "analysis", "conclusions"],
"optional": ["visualizations", "interpretations", "implications"]
}
}
```
## Validation Framework
### Link Validation Rules
```python
# @link_validation
def validate_links(document):
"""
Validate document links
Validation steps:
1. Check required links
2. Verify bidirectional links
3. Validate link types
4. Check link consistency
"""
required = check_required_links(document)
bidirectional = verify_bidirectional(document)
types = validate_link_types(document)
consistency = check_consistency(document)
return {
"required_complete": required,
"bidirectional_valid": bidirectional,
"types_valid": types,
"consistency_score": consistency
}
```
### Quality Metrics
```python
# @quality_metrics
link_quality = {
"completeness": {
"required_links": 0.95, # Required link coverage
"optional_links": 0.75, # Optional link coverage
"bidirectional": 0.90 # Bidirectional link completion
},
"consistency": {
"naming": 0.95, # Consistent naming
"structure": 0.90, # Structural consistency
"hierarchy": 0.85 # Hierarchical consistency
},
"validity": {
"broken_links": 0.0, # No broken links
"circular_refs": 0.0, # No circular references
"orphaned_docs": 0.0 # No orphaned documents
}
}
```
## Link Patterns
### Documentation Flow
```mermaid
graph TD
A[Concepts] --> B[Implementations]
B --> C[Documentation]
C --> D[Examples]
D --> E[Tests]
F[Research] --> G[Papers]
G --> H[Results]
H --> I[Knowledge Base]
```
### Knowledge Graph
```mermaid
graph LR
A[Core Concepts] --> B[Extensions]
B --> C[Implementations]
C --> D[Applications]
E[Research] --> F[Experiments]
F --> G[Results]
G --> H[Integration]
```
## Improvement Framework
### Link Enhancement
```python
# @link_enhancement
def enhance_links(document):
"""
Enhance document links
Enhancement steps:
1. Add missing required links
2. Complete bidirectional links
3. Add semantic annotations
4. Update link metadata
"""
pass
```
### Quality Monitoring
```python
# @quality_monitoring
def monitor_quality():
"""
Monitor link quality
Monitoring steps:
1. Track quality metrics
2. Identify issues
3. Generate reports
4. Suggest improvements
"""
pass
```
## Best Practices
### 1. Link Organization
- Group related links logically
- Maintain consistent structure
- Use appropriate annotations
- Include validation blocks
### 2. Link Maintenance
- Regular link validation
- Update bidirectional links
- Remove obsolete links
- Add new relationships
### 3. Link Quality
- Clear relationship types
- Appropriate context
- Meaningful descriptions
- Proper categorization
## Related Documentation
- [[obsidian_linking]]
- [[ai_validation_framework]]
- [[documentation_standards]]
- [[knowledge_organization]]
## References
- [[linking_patterns]]
- [[validation_methods]]
- [[quality_assurance]]
- [[documentation_tools]]