зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
3.4 KiB
3.4 KiB
| title | type | status | created | tags | semantic_relations | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Validation Framework | guide | draft | 2024-02-12 |
|
|
Validation Framework
Overview
This guide outlines the validation framework used to ensure theoretical consistency, implementation correctness, and quality standards across the cognitive modeling system.
Validation Layers
1. Theoretical Validation
- Mathematical consistency
- Theoretical soundness
- Formal proofs
- Constraint satisfaction
2. Implementation Validation
- Code correctness
- Algorithm implementation
- Numerical stability
- Performance optimization
3. Empirical Validation
- Experimental results
- Benchmark comparisons
- Real-world testing
- Performance metrics
Validation Methods
Mathematical Validation
def validate_probability_distribution(distribution):
"""Validate probability distribution properties."""
# Check normalization
assert np.isclose(distribution.sum(), 1.0)
# Check non-negativity
assert np.all(distribution >= 0)
# Check numerical stability
assert np.all(np.isfinite(distribution))
Implementation Validation
def validate_model_implementation(model):
"""Validate model implementation."""
# Check interface compliance
validate_interface(model)
# Verify state consistency
validate_state(model)
# Test core functionality
validate_behavior(model)
Empirical Validation
def validate_model_performance(model, benchmark_data):
"""Validate model performance."""
# Run benchmark tests
results = run_benchmarks(model, benchmark_data)
# Compare against baselines
validate_metrics(results, benchmarks)
# Check performance criteria
validate_performance(results)
Validation Workflow
1. Pre-implementation
- Review theoretical foundations
- Verify mathematical proofs
- Check assumptions
- Plan validation tests
2. During Implementation
- Unit testing
- Integration testing
- Property testing
- Performance profiling
3. Post-implementation
- System validation
- Benchmark testing
- Documentation review
- Code review
Validation Tools
Static Analysis
- Type checking
- Code linting
- Complexity analysis
- Dependency validation
Dynamic Analysis
- Runtime monitoring
- Memory profiling
- Performance tracking
- Coverage analysis
Quality Metrics
- Code quality
- Test coverage
- Documentation completeness
- Performance benchmarks
Best Practices
Documentation
- Document assumptions
- Specify constraints
- Detail validation methods
- Record test cases
Testing
- Comprehensive test suite
- Edge case coverage
- Performance benchmarks
- Integration tests
Review Process
- Code review
- Theory review
- Documentation review
- Performance review
Validation Checklist
Theory
- Mathematical consistency
- Theoretical soundness
- Constraint satisfaction
- Edge case handling
Implementation
- Code correctness
- Algorithm accuracy
- Numerical stability
- Performance optimization
Testing
- Unit tests
- Integration tests
- Benchmark tests
- Performance tests