cognitive/docs/guides/validation.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

3.4 KiB

title type status created tags semantic_relations
Validation Framework guide draft 2024-02-12
validation
quality
testing
type links
implements
ai_validation_framework
type links
relates
unit_testing
quality_metrics

Validation Framework

Overview

This guide outlines the validation framework used to ensure theoretical consistency, implementation correctness, and quality standards across the cognitive modeling system.

Validation Layers

1. Theoretical Validation

  • Mathematical consistency
  • Theoretical soundness
  • Formal proofs
  • Constraint satisfaction

2. Implementation Validation

  • Code correctness
  • Algorithm implementation
  • Numerical stability
  • Performance optimization

3. Empirical Validation

  • Experimental results
  • Benchmark comparisons
  • Real-world testing
  • Performance metrics

Validation Methods

Mathematical Validation

def validate_probability_distribution(distribution):
    """Validate probability distribution properties."""
    # Check normalization
    assert np.isclose(distribution.sum(), 1.0)
    
    # Check non-negativity
    assert np.all(distribution >= 0)
    
    # Check numerical stability
    assert np.all(np.isfinite(distribution))

Implementation Validation

def validate_model_implementation(model):
    """Validate model implementation."""
    # Check interface compliance
    validate_interface(model)
    
    # Verify state consistency
    validate_state(model)
    
    # Test core functionality
    validate_behavior(model)

Empirical Validation

def validate_model_performance(model, benchmark_data):
    """Validate model performance."""
    # Run benchmark tests
    results = run_benchmarks(model, benchmark_data)
    
    # Compare against baselines
    validate_metrics(results, benchmarks)
    
    # Check performance criteria
    validate_performance(results)

Validation Workflow

1. Pre-implementation

  • Review theoretical foundations
  • Verify mathematical proofs
  • Check assumptions
  • Plan validation tests

2. During Implementation

  • Unit testing
  • Integration testing
  • Property testing
  • Performance profiling

3. Post-implementation

  • System validation
  • Benchmark testing
  • Documentation review
  • Code review

Validation Tools

Static Analysis

  • Type checking
  • Code linting
  • Complexity analysis
  • Dependency validation

Dynamic Analysis

  • Runtime monitoring
  • Memory profiling
  • Performance tracking
  • Coverage analysis

Quality Metrics

  • Code quality
  • Test coverage
  • Documentation completeness
  • Performance benchmarks

Best Practices

Documentation

  • Document assumptions
  • Specify constraints
  • Detail validation methods
  • Record test cases

Testing

  • Comprehensive test suite
  • Edge case coverage
  • Performance benchmarks
  • Integration tests

Review Process

  • Code review
  • Theory review
  • Documentation review
  • Performance review

Validation Checklist

Theory

  • Mathematical consistency
  • Theoretical soundness
  • Constraint satisfaction
  • Edge case handling

Implementation

  • Code correctness
  • Algorithm accuracy
  • Numerical stability
  • Performance optimization

Testing

  • Unit tests
  • Integration tests
  • Benchmark tests
  • Performance tests