зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
7.9 KiB
7.9 KiB
| type | id | created | modified | tags | aliases | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| implementation | path_integral_implementation_001 | 2024-02-05 | 2024-02-05 |
|
|
Implementation Guide for Path Integral Methods
Numerical Foundations
Discretization Framework
class PathDiscretizer:
"""Framework for path discretization schemes."""
def __init__(self, dt: float, scheme: str = 'symplectic'):
self.dt = dt
self.scheme = self._initialize_scheme(scheme)
def discretize_action(self,
lagrangian: Callable,
path: np.ndarray) -> float:
"""Discretize continuous action functional."""
discrete_points = self.scheme(path, self.dt)
return self.compute_discrete_action(lagrangian, discrete_points)
Links to:
Stability Analysis
def analyze_stability(scheme: Callable,
test_system: Callable,
params: Dict) -> Dict[str, float]:
"""Analyze numerical stability of discretization."""
return {
'local_error': compute_local_error(scheme, test_system),
'global_error': compute_global_error(scheme, test_system),
'energy_drift': compute_energy_conservation(scheme, test_system)
}
Links to:
Path Sampling Methods
MCMC Implementation
class PathMCMC:
"""Markov Chain Monte Carlo for path sampling."""
def __init__(self, action: Callable, temperature: float):
self.action = action
self.beta = 1.0 / temperature
def hamiltonian_mc(self,
initial_path: np.ndarray,
num_steps: int) -> List[np.ndarray]:
"""Hamiltonian Monte Carlo sampling."""
paths = []
current = initial_path
momentum = self.sample_momentum(current.shape)
for _ in range(num_steps):
# Leapfrog integration
next_path, next_momentum = self.leapfrog_step(
current, momentum)
# Metropolis acceptance
if self.accept_state(current, next_path,
momentum, next_momentum):
current = next_path
momentum = next_momentum
paths.append(current.copy())
return paths
Links to:
Variational Methods
class VariationalPathSampler:
"""Variational inference for path distributions."""
def optimize_variational_parameters(self,
target_density: Callable,
variational_family: str,
**params) -> Dict:
"""Optimize variational approximation."""
elbo_history = []
current_params = self.initialize_parameters(variational_family)
while not self.converged(elbo_history):
# Compute ELBO gradient
grad = self.compute_elbo_gradient(
current_params, target_density)
# Update parameters
current_params = self.update_parameters(
current_params, grad, **params)
# Track progress
elbo = self.compute_elbo(
current_params, target_density)
elbo_history.append(elbo)
return current_params
Links to:
Active Inference Specifics
Free Energy Computation
class PathFreeEnergy:
"""Compute free energy for path ensembles."""
def __init__(self, model_density: Callable):
self.model = model_density
def compute_path_free_energy(self,
paths: np.ndarray,
variational_density: Callable) -> float:
"""Compute free energy for path ensemble."""
# Energy term
energy = self.compute_path_energy(paths)
# Entropy term
entropy = self.compute_path_entropy(
paths, variational_density)
return energy - entropy
Links to:
Policy Optimization
class PathBasedPolicyOptimizer:
"""Optimize policies using path integral methods."""
def optimize_policy(self,
initial_state: np.ndarray,
horizon: int,
num_samples: int) -> Callable:
"""Optimize policy using path sampling."""
# Generate path ensemble
paths = self.sample_paths(
initial_state, horizon, num_samples)
# Compute path weights
weights = self.compute_path_weights(paths)
# Update policy
return self.update_policy_parameters(paths, weights)
Links to:
Advanced Implementation Topics
Parallel Computing
class ParallelPathSampler:
"""Parallel implementation of path sampling."""
def parallel_sample_paths(self,
num_paths: int,
num_workers: int) -> np.ndarray:
"""Generate paths in parallel."""
with ProcessPoolExecutor(max_workers=num_workers) as executor:
paths = list(executor.map(
self.generate_single_path,
range(num_paths)))
return np.array(paths)
Links to:
Adaptive Methods
class AdaptivePathSampling:
"""Adaptive sampling methods for paths."""
def adapt_step_size(self,
acceptance_rate: float,
current_step: float) -> float:
"""Adapt integration step size."""
target_rate = 0.65 # Optimal acceptance rate
log_step = np.log(current_step)
return np.exp(log_step +
self.learning_rate *
(acceptance_rate - target_rate))
Links to:
Validation and Testing
Unit Tests
class PathIntegralTests:
"""Test suite for path integral implementations."""
def test_energy_conservation(self):
"""Test energy conservation in sampling."""
sampler = PathSampler(self.test_system)
paths = sampler.generate_paths(num_paths=1000)
energy_fluctuation = compute_energy_fluctuation(paths)
assert energy_fluctuation < self.tolerance
Links to:
Performance Benchmarks
class PathBenchmarks:
"""Benchmark suite for path methods."""
def benchmark_sampling(self,
methods: List[Callable],
system: Callable) -> Dict[str, float]:
"""Benchmark different sampling methods."""
results = {}
for method in methods:
start_time = time.time()
paths = method(system)
end_time = time.time()
results[method.__name__] = {
'time': end_time - start_time,
'efficiency': compute_sampling_efficiency(paths)
}
return results
Links to:
References
- neal_2011 - MCMC Using Hamiltonian Dynamics
- girolami_2011 - Riemann Manifold Langevin and Hamiltonian Monte Carlo
- hoffman_2014 - The No-U-Turn Sampler
- betancourt_2017 - A Conceptual Introduction to Hamiltonian Monte Carlo