зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 12:46:04 +02:00
14 KiB
14 KiB
Implementation Patterns Guide
title: Implementation Patterns Guide type: guide status: stable created: 2024-02-06 tags:
- implementation
- patterns
- design
- architecture semantic_relations:
- type: implements links:
- type: relates links:
Overview
This guide outlines implementation patterns for translating cognitive science theory into practical code. While the knowledge_base/cognitive/cognitive_science provides theoretical foundations, this guide focuses on concrete implementation strategies.
Core Implementation Patterns
Active Inference Implementation
# @active_inference_pattern
class ActiveInferencePattern:
"""
Core implementation pattern for Active Inference.
Theory: [[knowledge_base/cognitive/active_inference|Active Inference]]
API: [[docs/api/api_reference#active-inference-framework|API Reference]]
"""
def __init__(self):
self.belief_updater = BeliefUpdater() # [[belief_updating]]
self.policy_selector = PolicySelector() # [[action_selection]]
self.state_estimator = StateEstimator() # [[state_estimation]]
def cycle(self, observation: Observation) -> Action:
"""
Single cycle of perception-action.
Theory: [[knowledge_base/cognitive/active_inference#perception-action-cycle|Perception-Action Cycle]]
"""
# Update beliefs
beliefs = self.belief_updater.update(observation)
# Select policy
policy = self.policy_selector.select(beliefs)
# Execute action
action = policy.get_action()
return action
Belief Updating Pattern
# @belief_updating_pattern
class BeliefUpdatePattern:
"""
Implementation pattern for belief updating.
Theory:
- [[knowledge_base/cognitive/predictive_processing#belief-updating|Belief Updating]]
- [[knowledge_base/cognitive/free_energy_principle#variational-inference|Variational Inference]]
Mathematics:
- [[knowledge_base/mathematics/variational_methods|Variational Methods]]
- [[knowledge_base/mathematics/information_geometry|Information Geometry]]
API: [[docs/api/api_reference#belief-updating-system|API Reference]]
"""
def update_beliefs(self,
prior: Distribution,
likelihood: Distribution) -> Distribution:
"""
Update beliefs using variational inference.
Theory:
- [[knowledge_base/cognitive/free_energy_principle#variational-inference|Variational Inference]]
- [[knowledge_base/mathematics/kullback_leibler|KL Divergence]]
Implementation:
- [[docs/api/matrix_operations#gradient-descent|Gradient Descent]]
- [[docs/api/optimization_methods#natural-gradients|Natural Gradients]]
"""
# Compute posterior using variational methods
posterior = self._compute_posterior(prior, likelihood)
# Minimize free energy using natural gradients
optimized = self._minimize_free_energy(posterior)
return optimized
def _compute_posterior(self, prior: Distribution, likelihood: Distribution) -> Distribution:
"""
Compute posterior distribution.
Mathematics:
- [[knowledge_base/mathematics/bayes_theorem|Bayes Theorem]]
- [[knowledge_base/mathematics/exponential_families|Exponential Families]]
Implementation:
- [[docs/api/probability_utils#distribution-ops|Distribution Operations]]
"""
pass
def _minimize_free_energy(self, posterior: Distribution) -> Distribution:
"""
Minimize variational free energy.
Mathematics:
- [[knowledge_base/mathematics/variational_calculus|Variational Calculus]]
- [[knowledge_base/mathematics/optimization_theory|Optimization Theory]]
Implementation:
- [[docs/api/optimization_methods#variational-optimization|Variational Optimization]]
"""
pass
Policy Selection Pattern
# @policy_selection_pattern
class PolicySelectionPattern:
"""
Implementation pattern for policy selection.
Theory:
- [[knowledge_base/cognitive/active_inference#policy-selection|Policy Selection]]
- [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]]
Mathematics:
- [[knowledge_base/mathematics/information_theory|Information Theory]]
- [[knowledge_base/mathematics/decision_theory|Decision Theory]]
API: [[docs/api/api_reference#policy-selection|Policy Selection API]]
"""
def select_policy(self,
beliefs: BeliefState,
policies: List[Policy]) -> Policy:
"""
Select optimal policy using expected free energy.
Theory:
- [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]]
- [[knowledge_base/cognitive/active_inference#action-selection|Action Selection]]
Mathematics:
- [[knowledge_base/mathematics/expected_utility|Expected Utility]]
- [[knowledge_base/mathematics/information_gain|Information Gain]]
Implementation:
- [[docs/api/optimization_methods#policy-optimization|Policy Optimization]]
"""
# Generate and evaluate policies
policies = self._generate_policies()
policy_values = self._evaluate_policies(policies, beliefs)
# Select optimal policy using softmax
optimal_policy = self._select_optimal_policy(policy_values)
return optimal_policy
def _evaluate_policies(self,
policies: List[Policy],
beliefs: BeliefState) -> np.ndarray:
"""
Evaluate policies using expected free energy.
Mathematics:
- [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]]
- [[knowledge_base/mathematics/path_integral|Path Integral]]
Implementation:
- [[docs/api/matrix_operations#policy-evaluation|Policy Evaluation]]
"""
pass
def _select_optimal_policy(self,
policy_values: np.ndarray) -> Policy:
"""
Select optimal policy using softmax.
Mathematics:
- [[knowledge_base/mathematics/softmax|Softmax Function]]
- [[knowledge_base/mathematics/temperature_scaling|Temperature Scaling]]
Implementation:
- [[docs/api/probability_utils#softmax|Softmax Implementation]]
"""
pass
Perception Implementation Pattern
# @perception_pattern
class PerceptionPattern:
"""
Implementation pattern for perceptual processing.
Theory:
- [[knowledge_base/cognitive/predictive_processing#perception|Predictive Processing]]
- [[knowledge_base/cognitive/free_energy_principle#perceptual-inference|Perceptual Inference]]
Mathematics:
- [[knowledge_base/mathematics/hierarchical_models|Hierarchical Models]]
- [[knowledge_base/mathematics/message_passing|Message Passing]]
API: [[docs/api/api_reference#perception-system|Perception API]]
"""
def process_input(self,
sensory_input: Input,
prior_beliefs: BeliefState) -> Observation:
"""
Process sensory input using predictive processing.
Theory:
- [[knowledge_base/cognitive/predictive_processing#sensory-processing|Sensory Processing]]
- [[knowledge_base/cognitive/active_inference#perception|Active Inference Perception]]
Mathematics:
- [[knowledge_base/mathematics/prediction_error|Prediction Error]]
- [[knowledge_base/mathematics/precision_weighting|Precision Weighting]]
Implementation:
- [[docs/api/matrix_operations#error-computation|Error Computation]]
- [[docs/api/probability_utils#precision-scaling|Precision Scaling]]
"""
# Compute prediction errors
prediction_errors = self._compute_prediction_errors(
sensory_input, prior_beliefs
)
# Weight by precision
weighted_errors = self._weight_by_precision(prediction_errors)
# Update beliefs
updated_beliefs = self._update_beliefs(weighted_errors)
return updated_beliefs
def _compute_prediction_errors(self,
sensory_input: Input,
predictions: Predictions) -> PredictionErrors:
"""
Compute hierarchical prediction errors.
Mathematics:
- [[knowledge_base/mathematics/error_propagation|Error Propagation]]
- [[knowledge_base/mathematics/hierarchical_inference|Hierarchical Inference]]
Implementation:
- [[docs/api/matrix_operations#error-propagation|Error Propagation]]
"""
pass
def _weight_by_precision(self,
prediction_errors: PredictionErrors) -> WeightedErrors:
"""
Weight prediction errors by precision.
Mathematics:
- [[knowledge_base/mathematics/precision_matrices|Precision Matrices]]
- [[knowledge_base/mathematics/uncertainty_propagation|Uncertainty Propagation]]
Implementation:
- [[docs/api/matrix_operations#precision-weighting|Precision Weighting]]
"""
pass
Design Patterns
1. Model-View-Controller
# @mvc_pattern
class ModelPattern:
"""
MVC pattern for cognitive models.
Theory: [[knowledge_base/cognitive/cognitive_phenomena#model-architecture|Model Architecture]]
"""
def __init__(self):
self.model = GenerativeModel() # Internal model
self.view = ModelView() # Visualization
self.controller = ModelController() # Control logic
2. Observer Pattern
# @observer_pattern
class BeliefObserver:
"""
Observer pattern for belief monitoring.
Theory: [[knowledge_base/cognitive/predictive_processing#belief-monitoring|Belief Monitoring]]
"""
def update(self, beliefs: BeliefState):
"""Update on belief changes."""
self._log_beliefs(beliefs)
self._visualize_beliefs(beliefs)
Integration Patterns
1. Component Integration
# @integration_pattern
class IntegrationPattern:
"""
Pattern for component integration.
See [[docs/guides/system_integration|System Integration]]
"""
def __init__(self):
self.belief_component = BeliefComponent()
self.action_component = ActionComponent()
self.perception_component = PerceptionComponent()
2. Pipeline Pattern
# @pipeline_pattern
class ProcessingPipeline:
"""
Pattern for information processing pipeline.
Theory: [[knowledge_base/cognitive/predictive_processing#processing-hierarchy|Processing Hierarchy]]
"""
def process(self, input_data: Data) -> Result:
"""Process data through pipeline stages."""
preprocessed = self._preprocess(input_data)
processed = self._process(preprocessed)
postprocessed = self._postprocess(processed)
return postprocessed
Validation Patterns
1. Model Validation
# @validation_pattern
class ValidationPattern:
"""
Pattern for model validation.
See [[docs/guides/validation_guide|Validation Guide]]
"""
def validate_model(self, model: Model) -> ValidationResult:
"""Validate model components and behavior."""
structure_valid = self._validate_structure(model)
behavior_valid = self._validate_behavior(model)
performance_valid = self._validate_performance(model)
return ValidationResult(structure_valid, behavior_valid, performance_valid)
2. Testing Pattern
# @testing_pattern
class TestingPattern:
"""
Pattern for comprehensive testing.
See [[docs/guides/testing_guide|Testing Guide]]
"""
def test_suite(self) -> TestResults:
"""Run complete test suite."""
unit_results = self._run_unit_tests()
integration_results = self._run_integration_tests()
system_results = self._run_system_tests()
return TestResults(unit_results, integration_results, system_results)
Best Practices
1. Code Organization
- Follow docs/guides/code_organization
- Use docs/guides/naming_conventions
- Implement docs/guides/documentation_standards
2. Performance Optimization
- Follow docs/guides/performance_optimization
- Use docs/guides/profiling_guide
- Monitor docs/guides/performance_metrics
3. Quality Assurance
- Implement docs/guides/testing_guide
- Follow docs/guides/code_review
- Use docs/guides/validation_framework
Related Documentation
- knowledge_base/cognitive/cognitive_science
- docs/api/api_reference
- docs/guides/system_integration
- docs/guides/validation_guide