зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-30 04:36:05 +02:00 
			
		
		
		
	
		
			
				
	
	
	
		
			4.5 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			4.5 KiB
		
	
	
	
	
	
	
	
| title | type | status | created | tags | semantic_relations | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Machine Learning Guide | guide | draft | 2024-02-12 | 
 | 
 | 
Machine Learning Guide
Overview
This guide covers machine learning concepts, implementations, and best practices in the cognitive modeling framework.
Core Concepts
Learning Paradigms
- 
Active Inference - Free energy minimization
- Belief updating
- Action selection
- See knowledge_base/cognitive/active_inference
 
- 
Predictive Processing - Prediction error minimization
- Hierarchical inference
- Precision weighting
- See knowledge_base/cognitive/predictive_processing
 
- 
Variational Methods - Variational inference
- Variational Bayes
- Mean field approximation
- See knowledge_base/mathematics/variational_inference
 
Implementation
Model Architecture
Base Components
class CognitiveModel:
    def __init__(self):
        self.belief_network = BeliefNetwork()
        self.action_policy = ActionPolicy()
        self.perception_model = PerceptionModel()
Learning Components
class LearningModule:
    def __init__(self):
        self.optimizer = FreeEnergyOptimizer()
        self.inference = VariationalInference()
        self.memory = EpisodicMemory()
Training Process
- 
Data Preparation def prepare_data(self, observations): """Prepare data for learning.""" return self.preprocessor.transform(observations)
- 
Model Training def train_model(self, data, epochs=100): """Train the cognitive model.""" for epoch in range(epochs): self.update_beliefs(data) self.optimize_policy() self.evaluate_performance()
- 
Evaluation def evaluate_model(self, test_data): """Evaluate model performance.""" predictions = self.model.predict(test_data) metrics = self.compute_metrics(predictions) return metrics
Best Practices
Model Design
- Use hierarchical architectures
- Implement belief updating
- Enable active inference
- Support online learning
Training Process
- Validate assumptions
- Monitor convergence
- Track metrics
- Save checkpoints
Evaluation Methods
- Use multiple metrics
- Test edge cases
- Validate stability
- Compare baselines
Advanced Topics
Transfer Learning
- Pre-trained models
- Domain adaptation
- Knowledge transfer
- See knowledge_base/cognitive/transfer_learning
Meta-Learning
- Learning to learn
- Adaptation strategies
- Parameter optimization
- See knowledge_base/cognitive/meta_learning
Continual Learning
- Catastrophic forgetting
- Memory consolidation
- Stability-plasticity
- See knowledge_base/cognitive/continual_learning
Integration
With Active Inference
class ActiveInferenceLearner:
    """Integrate learning with active inference."""
    def __init__(self):
        self.model = ActiveInferenceModel()
        self.learner = LearningModule()
With Predictive Processing
class PredictiveLearner:
    """Integrate learning with predictive processing."""
    def __init__(self):
        self.model = PredictiveModel()
        self.learner = LearningModule()
Validation
Model Validation
- Test prediction accuracy
- Validate belief updates
- Check action selection
- Verify learning stability
Performance Metrics
- Prediction error
- Free energy
- Action efficiency
- Learning rate
Examples
Basic Learning
# Initialize model
model = CognitiveModel()
# Train model
data = load_training_data()
model.train(data)
# Evaluate
results = model.evaluate(test_data)
Advanced Learning
# Initialize with transfer learning
model = CognitiveModel(pretrained=True)
# Configure meta-learning
model.enable_meta_learning()
# Train with continual learning
model.train_continual(data_stream)
Troubleshooting
Common Issues
- Convergence problems
- Memory limitations
- Performance bottlenecks
- Integration errors
Solutions
- Adjust learning rates
- Optimize memory usage
- Profile performance
- Debug integration
