cognitive/InferAnt_Stream_10.md
Daniel Ari Friedman 6caa1a7cb1 Update
2025-02-07 08:16:25 -08:00

3.3 KiB

InferAnt Stream 10: Active Inference - Modeling, Learning, and Exploration

Stream Information

Epistemic Status

  • Incipient development phase
  • Semi-structured framework
  • Open for collaborations and contributions
  • Integrating theoretical foundations with practical implementations

Agenda

1. Introduction

  • Welcome and overview
  • Context from previous streams
  • Today's objectives and roadmap
  • Development environment setup
    • Cursor configuration
    • Obsidian knowledge base structure
    • GitHub repository organization

2. Theoretical Foundations

  • Active Inference Framework
    • Free Energy Principle review
    • Generative models
    • Belief updating
    • Policy selection
  • Learning and Exploration
    • Epistemic value
    • Expected free energy
    • Exploration-exploitation balance
    • Information gain

3. Implementation Architecture

  • Core Components
    • GenerativeModel class
    • BeliefUpdater class
    • PolicySelector class
    • FreeEnergyCalculator class
  • Matrix Requirements
    • A matrix (observation mapping)
    • B matrix (transition dynamics)
    • C matrix (preference encoding)
    • D matrix (prior beliefs)
    • E matrix (policy specification)

4. Code Development

  • Base Implementation
    • Matrix initialization and validation
    • Belief updating mechanisms
    • Policy evaluation functions
    • Action selection methods
  • Testing Framework
    • Unit tests setup
    • Integration tests
    • Visualization tests
    • Property-based tests

5. Practical Applications

  • Example Scenarios
    • Simple navigation task
    • Multi-agent coordination
    • Resource foraging
    • Pattern learning
  • Visualization Methods
    • State space plots
    • Belief evolution
    • Free energy landscapes
    • Policy evaluation

6. Future Directions

  • Next Steps
    • Extended functionality
    • Performance optimization
    • Additional test cases
    • Documentation improvements
  • Community Engagement
    • Contribution guidelines
    • Issue tracking
    • Feature requests
    • Collaboration opportunities

Repository Organization

cognitive/
├── src/
│   ├── active_inference/
│   │   ├── __init__.py
│   │   ├── generative_model.py
│   │   ├── belief_updater.py
│   │   └── policy_selector.py
│   └── utils/
│       ├── visualization.py
│       └── validation.py
├── tests/
│   ├── unit/
│   ├── integration/
│   └── visualization/
├── docs/
│   ├── theory/
│   ├── implementation/
│   └── examples/
└── examples/
    ├── navigation/
    ├── foraging/
    └── pattern_learning/

Next Steps

  1. Implement core classes and functions
  2. Develop comprehensive test suite
  3. Create visualization utilities
  4. Document API and examples
  5. Integrate with existing codebase
  6. Establish contribution workflow

References

  • Free Energy Principle foundations
  • Active Inference implementations
  • Related cognitive architectures
  • Relevant research papers

Notes

  • Focus on modular, reusable components
  • Maintain clear documentation
  • Ensure test coverage
  • Consider performance optimization
  • Enable easy extension