зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-11-03 22:56:07 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			226 строки
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			226 строки
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# Machine Readability and Automation
 | 
						|
 | 
						|
---
 | 
						|
title: Machine Readability and Automation
 | 
						|
type: concept
 | 
						|
status: stable
 | 
						|
created: 2024-02-06
 | 
						|
tags:
 | 
						|
  - automation
 | 
						|
  - machine-learning
 | 
						|
  - tooling
 | 
						|
related:
 | 
						|
  - [[plain_text_benefits]]
 | 
						|
  - [[automation_tools]]
 | 
						|
  - [[ci_cd_pipeline]]
 | 
						|
---
 | 
						|
 | 
						|
## Overview
 | 
						|
Machine readability is a core benefit of plain text formats, enabling automated processing, validation, and intelligence augmentation. This document explores how our plain text ecosystem facilitates automation and machine learning integration.
 | 
						|
 | 
						|
## Text Processing Benefits
 | 
						|
 | 
						|
### 1. Structured Data Extraction
 | 
						|
```python
 | 
						|
# Example of extracting model parameters
 | 
						|
def extract_parameters(markdown_file):
 | 
						|
    """Extract model parameters from markdown documentation.
 | 
						|
    See [[parameter_extraction]] for details."""
 | 
						|
    parameters = {}
 | 
						|
    # Parse YAML frontmatter
 | 
						|
    # Extract code blocks
 | 
						|
    # Parse parameter definitions
 | 
						|
    return parameters
 | 
						|
```
 | 
						|
 | 
						|
### 2. Knowledge Graph Construction
 | 
						|
- **Automated Link Analysis**
 | 
						|
  - [[link_extraction]]
 | 
						|
  - [[graph_construction]]
 | 
						|
  - [[relationship_inference]]
 | 
						|
 | 
						|
### 3. Semantic Analysis
 | 
						|
- **Natural Language Processing**
 | 
						|
  - [[text_embedding]]
 | 
						|
  - [[semantic_search]]
 | 
						|
  - [[concept_clustering]]
 | 
						|
 | 
						|
## Automation Capabilities
 | 
						|
 | 
						|
### 1. Documentation Processing
 | 
						|
```python
 | 
						|
# Automated documentation validation
 | 
						|
def validate_docs():
 | 
						|
    """
 | 
						|
    Validates documentation structure and links.
 | 
						|
    See [[documentation_validation]] for rules.
 | 
						|
    """
 | 
						|
    check_broken_links()
 | 
						|
    validate_frontmatter()
 | 
						|
    check_code_examples()
 | 
						|
```
 | 
						|
 | 
						|
### 2. Code Generation
 | 
						|
- **Template-Based Generation**
 | 
						|
  - [[code_templates]]
 | 
						|
  - [[boilerplate_generation]]
 | 
						|
  - [[test_generation]]
 | 
						|
 | 
						|
### 3. Quality Checks
 | 
						|
- **Automated Validation**
 | 
						|
  - [[style_checking]]
 | 
						|
  - [[link_validation]]
 | 
						|
  - [[consistency_checking]]
 | 
						|
 | 
						|
## Machine Learning Integration
 | 
						|
 | 
						|
### 1. Training Data Preparation
 | 
						|
```python
 | 
						|
# Convert documentation to training data
 | 
						|
def prepare_training_data():
 | 
						|
    """
 | 
						|
    Extracts training examples from documentation.
 | 
						|
    See [[training_data_preparation]].
 | 
						|
    """
 | 
						|
    examples = []
 | 
						|
    # Parse markdown files
 | 
						|
    # Extract code examples
 | 
						|
    # Generate labels
 | 
						|
    return examples
 | 
						|
```
 | 
						|
 | 
						|
### 2. Model Training
 | 
						|
- **Documentation-Based Training**
 | 
						|
  - [[code_completion]]
 | 
						|
  - [[documentation_generation]]
 | 
						|
  - [[error_prediction]]
 | 
						|
 | 
						|
### 3. Automated Improvement
 | 
						|
- **Continuous Learning**
 | 
						|
  - [[feedback_loops]]
 | 
						|
  - [[model_refinement]]
 | 
						|
  - [[performance_optimization]]
 | 
						|
 | 
						|
## Tooling Integration
 | 
						|
 | 
						|
### 1. CI/CD Pipeline
 | 
						|
```yaml
 | 
						|
# Example GitHub Actions workflow
 | 
						|
name: Documentation CI
 | 
						|
on: [push]
 | 
						|
jobs:
 | 
						|
  validate:
 | 
						|
    runs-on: ubuntu-latest
 | 
						|
    steps:
 | 
						|
      - uses: actions/checkout@v2
 | 
						|
      - name: Check Links
 | 
						|
        run: python tools/validate_links.py
 | 
						|
      - name: Generate Docs
 | 
						|
        run: python tools/generate_docs.py
 | 
						|
```
 | 
						|
 | 
						|
### 2. Development Tools
 | 
						|
- **Editor Integration**
 | 
						|
  - [[ide_plugins]]
 | 
						|
  - [[linting_tools]]
 | 
						|
  - [[autocomplete]]
 | 
						|
 | 
						|
### 3. Analysis Tools
 | 
						|
- **Automated Analysis**
 | 
						|
  - [[complexity_analysis]]
 | 
						|
  - [[coverage_reporting]]
 | 
						|
  - [[dependency_tracking]]
 | 
						|
 | 
						|
## Knowledge Extraction
 | 
						|
 | 
						|
### 1. Concept Mining
 | 
						|
```python
 | 
						|
# Extract concepts from documentation
 | 
						|
def mine_concepts():
 | 
						|
    """
 | 
						|
    Identifies key concepts and relationships.
 | 
						|
    See [[concept_mining]].
 | 
						|
    """
 | 
						|
    concepts = {}
 | 
						|
    # Parse documentation
 | 
						|
    # Extract concepts
 | 
						|
    # Build relationships
 | 
						|
    return concepts
 | 
						|
```
 | 
						|
 | 
						|
### 2. Pattern Recognition
 | 
						|
- **Automated Pattern Detection**
 | 
						|
  - [[code_patterns]]
 | 
						|
  - [[documentation_patterns]]
 | 
						|
  - [[usage_patterns]]
 | 
						|
 | 
						|
### 3. Knowledge Base Construction
 | 
						|
- **Automated Organization**
 | 
						|
  - [[knowledge_extraction]]
 | 
						|
  - [[taxonomy_building]]
 | 
						|
  - [[ontology_construction]]
 | 
						|
 | 
						|
## Automation Examples
 | 
						|
 | 
						|
### 1. Documentation Generation
 | 
						|
```python
 | 
						|
# Generate API documentation
 | 
						|
def generate_api_docs():
 | 
						|
    """
 | 
						|
    Generates API documentation from source code.
 | 
						|
    See [[api_documentation]].
 | 
						|
    """
 | 
						|
    parse_source_code()
 | 
						|
    extract_docstrings()
 | 
						|
    generate_markdown()
 | 
						|
```
 | 
						|
 | 
						|
### 2. Validation Workflows
 | 
						|
```mermaid
 | 
						|
graph TD
 | 
						|
    A[Parse Files] --> B[Extract Content]
 | 
						|
    B --> C[Validate Structure]
 | 
						|
    C --> D[Check Links]
 | 
						|
    D --> E[Generate Report]
 | 
						|
```
 | 
						|
 | 
						|
### 3. Learning Systems
 | 
						|
```mermaid
 | 
						|
graph LR
 | 
						|
    A[Documentation] --> B[Training Data]
 | 
						|
    B --> C[Model Training]
 | 
						|
    C --> D[Automated Tools]
 | 
						|
    D --> E[Improved Docs]
 | 
						|
```
 | 
						|
 | 
						|
## Best Practices
 | 
						|
 | 
						|
### 1. Structure Guidelines
 | 
						|
- **Machine-Friendly Format**
 | 
						|
  - [[consistent_formatting]]
 | 
						|
  - [[clear_structure]]
 | 
						|
  - [[metadata_standards]]
 | 
						|
 | 
						|
### 2. Automation Rules
 | 
						|
- **Tool Configuration**
 | 
						|
  - [[tool_settings]]
 | 
						|
  - [[automation_rules]]
 | 
						|
  - [[validation_criteria]]
 | 
						|
 | 
						|
### 3. Integration Patterns
 | 
						|
- **Tool Integration**
 | 
						|
  - [[workflow_integration]]
 | 
						|
  - [[tool_chaining]]
 | 
						|
  - [[feedback_systems]]
 | 
						|
 | 
						|
## Related Tools
 | 
						|
- [[documentation_generators]]
 | 
						|
- [[static_analyzers]]
 | 
						|
- [[validation_tools]]
 | 
						|
- [[automation_frameworks]]
 | 
						|
 | 
						|
## References
 | 
						|
- [[automation_patterns]]
 | 
						|
- [[machine_learning_integration]]
 | 
						|
- [[tooling_ecosystem]]
 | 
						|
- [[ci_cd_practices]]  |