зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 05:06:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			232 строки
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			232 строки
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # Documentation Linking Analysis
 | |
| 
 | |
| ---
 | |
| title: Documentation Linking Analysis
 | |
| type: guide
 | |
| status: stable
 | |
| created: 2024-02-06
 | |
| tags:
 | |
|   - linking
 | |
|   - validation
 | |
|   - analysis
 | |
|   - documentation
 | |
| semantic_relations:
 | |
|   - type: implements
 | |
|     links: [[obsidian_linking]]
 | |
|   - type: extends
 | |
|     links: [[ai_validation_framework]]
 | |
| ---
 | |
| 
 | |
| ## Overview
 | |
| This guide analyzes the current linking patterns and provides validation frameworks for maintaining high-quality documentation relationships.
 | |
| 
 | |
| ## Link Pattern Analysis
 | |
| 
 | |
| ### Core Link Types
 | |
| ```yaml
 | |
| link_types:
 | |
|   hierarchical:
 | |
|     - parent_child:     # Concept hierarchies
 | |
|         pattern: "[[parent]] -> [[child]]"
 | |
|         validation: "bidirectional"
 | |
|     - implementation:   # Concept to implementation
 | |
|         pattern: "[[concept]] -> [[implementation]]"
 | |
|         validation: "traceable"
 | |
|     - documentation:    # Documentation relationships
 | |
|         pattern: "[[guide]] -> [[reference]]"
 | |
|         validation: "consistent"
 | |
|   
 | |
|   semantic:
 | |
|     - prerequisite:     # Required knowledge
 | |
|         pattern: "[[prereq]] -> [[concept]]"
 | |
|         confidence: 0.8
 | |
|     - related:         # Related concepts
 | |
|         pattern: "[[concept_a]] <-> [[concept_b]]"
 | |
|         similarity: 0.7
 | |
|     - extends:         # Extension relationships
 | |
|         pattern: "[[base]] -> [[extension]]"
 | |
|         validation: "complete"
 | |
| ```
 | |
| 
 | |
| ### Link Categories
 | |
| 
 | |
| #### Knowledge Organization
 | |
| ```python
 | |
| # @knowledge_links
 | |
| knowledge_structure = {
 | |
|     "concepts": {
 | |
|         "required": ["parent", "children", "implementations"],
 | |
|         "optional": ["related", "examples", "references"]
 | |
|     },
 | |
|     "implementations": {
 | |
|         "required": ["concept", "tests", "documentation"],
 | |
|         "optional": ["examples", "extensions", "optimizations"]
 | |
|     },
 | |
|     "documentation": {
 | |
|         "required": ["overview", "details", "references"],
 | |
|         "optional": ["examples", "tutorials", "guides"]
 | |
|     }
 | |
| }
 | |
| ```
 | |
| 
 | |
| #### Research Integration
 | |
| ```python
 | |
| # @research_links
 | |
| research_structure = {
 | |
|     "papers": {
 | |
|         "required": ["methodology", "results", "references"],
 | |
|         "optional": ["data", "code", "supplements"]
 | |
|     },
 | |
|     "experiments": {
 | |
|         "required": ["protocol", "data", "analysis"],
 | |
|         "optional": ["code", "results", "visualizations"]
 | |
|     },
 | |
|     "results": {
 | |
|         "required": ["data", "analysis", "conclusions"],
 | |
|         "optional": ["visualizations", "interpretations", "implications"]
 | |
|     }
 | |
| }
 | |
| ```
 | |
| 
 | |
| ## Validation Framework
 | |
| 
 | |
| ### Link Validation Rules
 | |
| ```python
 | |
| # @link_validation
 | |
| def validate_links(document):
 | |
|     """
 | |
|     Validate document links
 | |
|     
 | |
|     Validation steps:
 | |
|     1. Check required links
 | |
|     2. Verify bidirectional links
 | |
|     3. Validate link types
 | |
|     4. Check link consistency
 | |
|     """
 | |
|     required = check_required_links(document)
 | |
|     bidirectional = verify_bidirectional(document)
 | |
|     types = validate_link_types(document)
 | |
|     consistency = check_consistency(document)
 | |
|     
 | |
|     return {
 | |
|         "required_complete": required,
 | |
|         "bidirectional_valid": bidirectional,
 | |
|         "types_valid": types,
 | |
|         "consistency_score": consistency
 | |
|     }
 | |
| ```
 | |
| 
 | |
| ### Quality Metrics
 | |
| ```python
 | |
| # @quality_metrics
 | |
| link_quality = {
 | |
|     "completeness": {
 | |
|         "required_links": 0.95,    # Required link coverage
 | |
|         "optional_links": 0.75,    # Optional link coverage
 | |
|         "bidirectional": 0.90      # Bidirectional link completion
 | |
|     },
 | |
|     "consistency": {
 | |
|         "naming": 0.95,           # Consistent naming
 | |
|         "structure": 0.90,        # Structural consistency
 | |
|         "hierarchy": 0.85         # Hierarchical consistency
 | |
|     },
 | |
|     "validity": {
 | |
|         "broken_links": 0.0,      # No broken links
 | |
|         "circular_refs": 0.0,     # No circular references
 | |
|         "orphaned_docs": 0.0      # No orphaned documents
 | |
|     }
 | |
| }
 | |
| ```
 | |
| 
 | |
| ## Link Patterns
 | |
| 
 | |
| ### Documentation Flow
 | |
| ```mermaid
 | |
| graph TD
 | |
|     A[Concepts] --> B[Implementations]
 | |
|     B --> C[Documentation]
 | |
|     C --> D[Examples]
 | |
|     D --> E[Tests]
 | |
|     
 | |
|     F[Research] --> G[Papers]
 | |
|     G --> H[Results]
 | |
|     H --> I[Knowledge Base]
 | |
| ```
 | |
| 
 | |
| ### Knowledge Graph
 | |
| ```mermaid
 | |
| graph LR
 | |
|     A[Core Concepts] --> B[Extensions]
 | |
|     B --> C[Implementations]
 | |
|     C --> D[Applications]
 | |
|     
 | |
|     E[Research] --> F[Experiments]
 | |
|     F --> G[Results]
 | |
|     G --> H[Integration]
 | |
| ```
 | |
| 
 | |
| ## Improvement Framework
 | |
| 
 | |
| ### Link Enhancement
 | |
| ```python
 | |
| # @link_enhancement
 | |
| def enhance_links(document):
 | |
|     """
 | |
|     Enhance document links
 | |
|     
 | |
|     Enhancement steps:
 | |
|     1. Add missing required links
 | |
|     2. Complete bidirectional links
 | |
|     3. Add semantic annotations
 | |
|     4. Update link metadata
 | |
|     """
 | |
|     pass
 | |
| ```
 | |
| 
 | |
| ### Quality Monitoring
 | |
| ```python
 | |
| # @quality_monitoring
 | |
| def monitor_quality():
 | |
|     """
 | |
|     Monitor link quality
 | |
|     
 | |
|     Monitoring steps:
 | |
|     1. Track quality metrics
 | |
|     2. Identify issues
 | |
|     3. Generate reports
 | |
|     4. Suggest improvements
 | |
|     """
 | |
|     pass
 | |
| ```
 | |
| 
 | |
| ## Best Practices
 | |
| 
 | |
| ### 1. Link Organization
 | |
| - Group related links logically
 | |
| - Maintain consistent structure
 | |
| - Use appropriate annotations
 | |
| - Include validation blocks
 | |
| 
 | |
| ### 2. Link Maintenance
 | |
| - Regular link validation
 | |
| - Update bidirectional links
 | |
| - Remove obsolete links
 | |
| - Add new relationships
 | |
| 
 | |
| ### 3. Link Quality
 | |
| - Clear relationship types
 | |
| - Appropriate context
 | |
| - Meaningful descriptions
 | |
| - Proper categorization
 | |
| 
 | |
| ## Related Documentation
 | |
| - [[obsidian_linking]]
 | |
| - [[ai_validation_framework]]
 | |
| - [[documentation_standards]]
 | |
| - [[knowledge_organization]]
 | |
| 
 | |
| ## References
 | |
| - [[linking_patterns]]
 | |
| - [[validation_methods]]
 | |
| - [[quality_assurance]]
 | |
| - [[documentation_tools]]  | 
