зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 12:46:04 +02:00
226 строки
4.9 KiB
Markdown
226 строки
4.9 KiB
Markdown
# Machine Readability and Automation
|
|
|
|
---
|
|
title: Machine Readability and Automation
|
|
type: concept
|
|
status: stable
|
|
created: 2024-02-06
|
|
tags:
|
|
- automation
|
|
- machine-learning
|
|
- tooling
|
|
related:
|
|
- [[plain_text_benefits]]
|
|
- [[automation_tools]]
|
|
- [[ci_cd_pipeline]]
|
|
---
|
|
|
|
## Overview
|
|
Machine readability is a core benefit of plain text formats, enabling automated processing, validation, and intelligence augmentation. This document explores how our plain text ecosystem facilitates automation and machine learning integration.
|
|
|
|
## Text Processing Benefits
|
|
|
|
### 1. Structured Data Extraction
|
|
```python
|
|
# Example of extracting model parameters
|
|
def extract_parameters(markdown_file):
|
|
"""Extract model parameters from markdown documentation.
|
|
See [[parameter_extraction]] for details."""
|
|
parameters = {}
|
|
# Parse YAML frontmatter
|
|
# Extract code blocks
|
|
# Parse parameter definitions
|
|
return parameters
|
|
```
|
|
|
|
### 2. Knowledge Graph Construction
|
|
- **Automated Link Analysis**
|
|
- [[link_extraction]]
|
|
- [[graph_construction]]
|
|
- [[relationship_inference]]
|
|
|
|
### 3. Semantic Analysis
|
|
- **Natural Language Processing**
|
|
- [[text_embedding]]
|
|
- [[semantic_search]]
|
|
- [[concept_clustering]]
|
|
|
|
## Automation Capabilities
|
|
|
|
### 1. Documentation Processing
|
|
```python
|
|
# Automated documentation validation
|
|
def validate_docs():
|
|
"""
|
|
Validates documentation structure and links.
|
|
See [[documentation_validation]] for rules.
|
|
"""
|
|
check_broken_links()
|
|
validate_frontmatter()
|
|
check_code_examples()
|
|
```
|
|
|
|
### 2. Code Generation
|
|
- **Template-Based Generation**
|
|
- [[code_templates]]
|
|
- [[boilerplate_generation]]
|
|
- [[test_generation]]
|
|
|
|
### 3. Quality Checks
|
|
- **Automated Validation**
|
|
- [[style_checking]]
|
|
- [[link_validation]]
|
|
- [[consistency_checking]]
|
|
|
|
## Machine Learning Integration
|
|
|
|
### 1. Training Data Preparation
|
|
```python
|
|
# Convert documentation to training data
|
|
def prepare_training_data():
|
|
"""
|
|
Extracts training examples from documentation.
|
|
See [[training_data_preparation]].
|
|
"""
|
|
examples = []
|
|
# Parse markdown files
|
|
# Extract code examples
|
|
# Generate labels
|
|
return examples
|
|
```
|
|
|
|
### 2. Model Training
|
|
- **Documentation-Based Training**
|
|
- [[code_completion]]
|
|
- [[documentation_generation]]
|
|
- [[error_prediction]]
|
|
|
|
### 3. Automated Improvement
|
|
- **Continuous Learning**
|
|
- [[feedback_loops]]
|
|
- [[model_refinement]]
|
|
- [[performance_optimization]]
|
|
|
|
## Tooling Integration
|
|
|
|
### 1. CI/CD Pipeline
|
|
```yaml
|
|
# Example GitHub Actions workflow
|
|
name: Documentation CI
|
|
on: [push]
|
|
jobs:
|
|
validate:
|
|
runs-on: ubuntu-latest
|
|
steps:
|
|
- uses: actions/checkout@v2
|
|
- name: Check Links
|
|
run: python tools/validate_links.py
|
|
- name: Generate Docs
|
|
run: python tools/generate_docs.py
|
|
```
|
|
|
|
### 2. Development Tools
|
|
- **Editor Integration**
|
|
- [[ide_plugins]]
|
|
- [[linting_tools]]
|
|
- [[autocomplete]]
|
|
|
|
### 3. Analysis Tools
|
|
- **Automated Analysis**
|
|
- [[complexity_analysis]]
|
|
- [[coverage_reporting]]
|
|
- [[dependency_tracking]]
|
|
|
|
## Knowledge Extraction
|
|
|
|
### 1. Concept Mining
|
|
```python
|
|
# Extract concepts from documentation
|
|
def mine_concepts():
|
|
"""
|
|
Identifies key concepts and relationships.
|
|
See [[concept_mining]].
|
|
"""
|
|
concepts = {}
|
|
# Parse documentation
|
|
# Extract concepts
|
|
# Build relationships
|
|
return concepts
|
|
```
|
|
|
|
### 2. Pattern Recognition
|
|
- **Automated Pattern Detection**
|
|
- [[code_patterns]]
|
|
- [[documentation_patterns]]
|
|
- [[usage_patterns]]
|
|
|
|
### 3. Knowledge Base Construction
|
|
- **Automated Organization**
|
|
- [[knowledge_extraction]]
|
|
- [[taxonomy_building]]
|
|
- [[ontology_construction]]
|
|
|
|
## Automation Examples
|
|
|
|
### 1. Documentation Generation
|
|
```python
|
|
# Generate API documentation
|
|
def generate_api_docs():
|
|
"""
|
|
Generates API documentation from source code.
|
|
See [[api_documentation]].
|
|
"""
|
|
parse_source_code()
|
|
extract_docstrings()
|
|
generate_markdown()
|
|
```
|
|
|
|
### 2. Validation Workflows
|
|
```mermaid
|
|
graph TD
|
|
A[Parse Files] --> B[Extract Content]
|
|
B --> C[Validate Structure]
|
|
C --> D[Check Links]
|
|
D --> E[Generate Report]
|
|
```
|
|
|
|
### 3. Learning Systems
|
|
```mermaid
|
|
graph LR
|
|
A[Documentation] --> B[Training Data]
|
|
B --> C[Model Training]
|
|
C --> D[Automated Tools]
|
|
D --> E[Improved Docs]
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
### 1. Structure Guidelines
|
|
- **Machine-Friendly Format**
|
|
- [[consistent_formatting]]
|
|
- [[clear_structure]]
|
|
- [[metadata_standards]]
|
|
|
|
### 2. Automation Rules
|
|
- **Tool Configuration**
|
|
- [[tool_settings]]
|
|
- [[automation_rules]]
|
|
- [[validation_criteria]]
|
|
|
|
### 3. Integration Patterns
|
|
- **Tool Integration**
|
|
- [[workflow_integration]]
|
|
- [[tool_chaining]]
|
|
- [[feedback_systems]]
|
|
|
|
## Related Tools
|
|
- [[documentation_generators]]
|
|
- [[static_analyzers]]
|
|
- [[validation_tools]]
|
|
- [[automation_frameworks]]
|
|
|
|
## References
|
|
- [[automation_patterns]]
|
|
- [[machine_learning_integration]]
|
|
- [[tooling_ecosystem]]
|
|
- [[ci_cd_practices]] |