зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-11-04 07:06:06 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			328 строки
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			328 строки
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# AI Semantic Processing Guide
 | 
						|
 | 
						|
---
 | 
						|
title: AI Semantic Processing Guide
 | 
						|
type: guide
 | 
						|
status: stable
 | 
						|
created: 2024-02-06
 | 
						|
tags:
 | 
						|
  - semantic
 | 
						|
  - embeddings
 | 
						|
  - ai
 | 
						|
  - processing
 | 
						|
complexity: advanced
 | 
						|
processing_priority: 1
 | 
						|
semantic_relations:
 | 
						|
  - type: implements
 | 
						|
    links: [[machine_readability]]
 | 
						|
  - type: extends
 | 
						|
    links: [[knowledge_organization]]
 | 
						|
embeddings:
 | 
						|
  model: sentence-transformers/all-mpnet-base-v2
 | 
						|
  dimensions: 768
 | 
						|
---
 | 
						|
 | 
						|
## Overview
 | 
						|
This guide defines semantic processing standards and embedding strategies for hyper-intelligent agents to effectively process and understand the knowledge base.
 | 
						|
 | 
						|
## Semantic Processing Framework
 | 
						|
 | 
						|
### Text Embeddings
 | 
						|
```python
 | 
						|
# @embedding_specification
 | 
						|
embedding_config = {
 | 
						|
    "models": {
 | 
						|
        "text": "sentence-transformers/all-mpnet-base-v2",
 | 
						|
        "code": "microsoft/codebert-base",
 | 
						|
        "graph": "knowledge-graph-bert"
 | 
						|
    },
 | 
						|
    "dimensions": {
 | 
						|
        "text": 768,
 | 
						|
        "code": 768,
 | 
						|
        "graph": 512
 | 
						|
    },
 | 
						|
    "pooling": "mean",
 | 
						|
    "normalization": "l2"
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
### Semantic Markers
 | 
						|
```yaml
 | 
						|
semantic_markers:
 | 
						|
  concept:
 | 
						|
    prefix: "#CONCEPT:"
 | 
						|
    weight: 1.0
 | 
						|
    embedding_type: "text"
 | 
						|
  implementation:
 | 
						|
    prefix: "#IMPL:"
 | 
						|
    weight: 0.8
 | 
						|
    embedding_type: "code"
 | 
						|
  relationship:
 | 
						|
    prefix: "#REL:"
 | 
						|
    weight: 0.9
 | 
						|
    embedding_type: "graph"
 | 
						|
```
 | 
						|
 | 
						|
## Knowledge Graph Integration
 | 
						|
 | 
						|
### Graph Structure
 | 
						|
```python
 | 
						|
# @graph_specification
 | 
						|
class KnowledgeGraphNode:
 | 
						|
    """
 | 
						|
    Knowledge graph node with semantic embeddings
 | 
						|
    """
 | 
						|
    def __init__(self):
 | 
						|
        self.embeddings = {
 | 
						|
            "text": np.ndarray,    # Text embedding
 | 
						|
            "code": np.ndarray,    # Code embedding
 | 
						|
            "graph": np.ndarray    # Graph structure embedding
 | 
						|
        }
 | 
						|
        self.relationships = []    # Typed edges
 | 
						|
        self.metadata = {}         # Node metadata
 | 
						|
```
 | 
						|
 | 
						|
### Relationship Types
 | 
						|
```yaml
 | 
						|
relationship_types:
 | 
						|
  hierarchical:
 | 
						|
    - is_a: 0.9          # Type hierarchy
 | 
						|
    - part_of: 0.8       # Composition
 | 
						|
    - implements: 0.7    # Implementation
 | 
						|
  semantic:
 | 
						|
    - similar_to: 0.6    # Semantic similarity
 | 
						|
    - related_to: 0.5    # General relation
 | 
						|
    - references: 0.4    # Reference relation
 | 
						|
  temporal:
 | 
						|
    - precedes: 0.8      # Temporal ordering
 | 
						|
    - depends_on: 0.7    # Dependency
 | 
						|
    - evolves_to: 0.6    # Evolution
 | 
						|
```
 | 
						|
 | 
						|
## Processing Instructions
 | 
						|
 | 
						|
### Embedding Generation
 | 
						|
```python
 | 
						|
# @embedding_generation
 | 
						|
def generate_embeddings(content: str, type: str) -> dict:
 | 
						|
    """
 | 
						|
    Generate embeddings for content
 | 
						|
    
 | 
						|
    Processing steps:
 | 
						|
    1. Preprocess content based on type
 | 
						|
    2. Select appropriate model
 | 
						|
    3. Generate embeddings
 | 
						|
    4. Post-process and validate
 | 
						|
    """
 | 
						|
    pass
 | 
						|
```
 | 
						|
 | 
						|
### Semantic Analysis
 | 
						|
```python
 | 
						|
# @semantic_analysis
 | 
						|
def analyze_semantics(node: KnowledgeGraphNode) -> dict:
 | 
						|
    """
 | 
						|
    Analyze semantic content
 | 
						|
    
 | 
						|
    Analysis steps:
 | 
						|
    1. Extract key concepts
 | 
						|
    2. Identify relationships
 | 
						|
    3. Compute similarities
 | 
						|
    4. Generate insights
 | 
						|
    """
 | 
						|
    pass
 | 
						|
```
 | 
						|
 | 
						|
## Query Processing
 | 
						|
 | 
						|
### Semantic Search
 | 
						|
```python
 | 
						|
# @semantic_search
 | 
						|
def semantic_search(query: str, context: dict) -> list:
 | 
						|
    """
 | 
						|
    Semantic search implementation
 | 
						|
    
 | 
						|
    Search process:
 | 
						|
    1. Embed query
 | 
						|
    2. Compute similarities
 | 
						|
    3. Filter by context
 | 
						|
    4. Rank results
 | 
						|
    """
 | 
						|
    pass
 | 
						|
```
 | 
						|
 | 
						|
### Relationship Inference
 | 
						|
```python
 | 
						|
# @relationship_inference
 | 
						|
def infer_relationships(source: KnowledgeGraphNode, target: KnowledgeGraphNode) -> list:
 | 
						|
    """
 | 
						|
    Infer relationships between nodes
 | 
						|
    
 | 
						|
    Inference steps:
 | 
						|
    1. Compare embeddings
 | 
						|
    2. Analyze context
 | 
						|
    3. Apply inference rules
 | 
						|
    4. Validate relationships
 | 
						|
    """
 | 
						|
    pass
 | 
						|
```
 | 
						|
 | 
						|
## Processing Pipeline
 | 
						|
 | 
						|
### Document Processing
 | 
						|
```mermaid
 | 
						|
graph TD
 | 
						|
    A[Raw Document] --> B[Text Extraction]
 | 
						|
    B --> C[Semantic Parsing]
 | 
						|
    C --> D[Embedding Generation]
 | 
						|
    D --> E[Graph Integration]
 | 
						|
    E --> F[Validation]
 | 
						|
```
 | 
						|
 | 
						|
### Query Processing
 | 
						|
```mermaid
 | 
						|
graph LR
 | 
						|
    A[Query] --> B[Query Embedding]
 | 
						|
    B --> C[Similarity Search]
 | 
						|
    C --> D[Context Analysis]
 | 
						|
    D --> E[Result Ranking]
 | 
						|
```
 | 
						|
 | 
						|
## Optimization Guidelines
 | 
						|
 | 
						|
### Embedding Optimization
 | 
						|
```python
 | 
						|
# @embedding_optimization
 | 
						|
optimization_config = {
 | 
						|
    "caching": {
 | 
						|
        "strategy": "least_recently_used",
 | 
						|
        "max_size": "10GB",
 | 
						|
        "ttl": "24h"
 | 
						|
    },
 | 
						|
    "computation": {
 | 
						|
        "batch_size": 32,
 | 
						|
        "precision": "float16",
 | 
						|
        "device": "cuda"
 | 
						|
    },
 | 
						|
    "storage": {
 | 
						|
        "format": "memory_mapped",
 | 
						|
        "compression": "lz4",
 | 
						|
        "indexing": "faiss"
 | 
						|
    }
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
### Performance Tuning
 | 
						|
```yaml
 | 
						|
performance_config:
 | 
						|
  embedding_generation:
 | 
						|
    batch_size: 32
 | 
						|
    max_length: 512
 | 
						|
    truncation: true
 | 
						|
  similarity_search:
 | 
						|
    index_type: "IVFFlat"
 | 
						|
    nprobe: 16
 | 
						|
    metric: "cosine"
 | 
						|
  graph_operations:
 | 
						|
    max_depth: 3
 | 
						|
    beam_width: 5
 | 
						|
    pruning_threshold: 0.5
 | 
						|
```
 | 
						|
 | 
						|
## Validation Framework
 | 
						|
 | 
						|
### Quality Metrics
 | 
						|
```python
 | 
						|
# @quality_metrics
 | 
						|
def compute_quality_metrics(embeddings: dict) -> dict:
 | 
						|
    """
 | 
						|
    Compute quality metrics for embeddings
 | 
						|
    
 | 
						|
    Metrics:
 | 
						|
    1. Coverage
 | 
						|
    2. Consistency
 | 
						|
    3. Coherence
 | 
						|
    4. Discriminative power
 | 
						|
    """
 | 
						|
    return {
 | 
						|
        "coverage": 0.95,
 | 
						|
        "consistency": 0.92,
 | 
						|
        "coherence": 0.88,
 | 
						|
        "discrimination": 0.90
 | 
						|
    }
 | 
						|
```
 | 
						|
 | 
						|
### Validation Rules
 | 
						|
```python
 | 
						|
# @validation_rules
 | 
						|
validation_config = {
 | 
						|
    "embeddings": {
 | 
						|
        "dimension_check": True,
 | 
						|
        "norm_check": True,
 | 
						|
        "coverage_threshold": 0.9
 | 
						|
    },
 | 
						|
    "relationships": {
 | 
						|
        "symmetry_check": True,
 | 
						|
        "transitivity_check": True,
 | 
						|
        "cycle_detection": True
 | 
						|
    },
 | 
						|
    "graph": {
 | 
						|
        "connectivity_check": True,
 | 
						|
        "consistency_check": True,
 | 
						|
        "completeness_check": True
 | 
						|
    }
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
## Integration Examples
 | 
						|
 | 
						|
### Knowledge Base Integration
 | 
						|
```python
 | 
						|
# Example of knowledge base integration
 | 
						|
from cognitive_system import SemanticProcessor
 | 
						|
 | 
						|
processor = SemanticProcessor(config=embedding_config)
 | 
						|
 | 
						|
# Process document
 | 
						|
doc_embeddings = processor.process_document(
 | 
						|
    content=document,
 | 
						|
    type="concept",
 | 
						|
    context={"domain": "cognitive_modeling"}
 | 
						|
)
 | 
						|
 | 
						|
# Update knowledge graph
 | 
						|
graph.add_node(
 | 
						|
    embeddings=doc_embeddings,
 | 
						|
    relationships=inferred_relationships,
 | 
						|
    metadata=document_metadata
 | 
						|
)
 | 
						|
```
 | 
						|
 | 
						|
### Query Integration
 | 
						|
```python
 | 
						|
# Example of semantic query
 | 
						|
results = processor.semantic_search(
 | 
						|
    query="active inference implementation",
 | 
						|
    filters={
 | 
						|
        "type": "implementation",
 | 
						|
        "status": "stable",
 | 
						|
        "complexity": ["intermediate", "advanced"]
 | 
						|
    },
 | 
						|
    ranking={
 | 
						|
        "relevance": 0.7,
 | 
						|
        "recency": 0.3
 | 
						|
    }
 | 
						|
)
 | 
						|
```
 | 
						|
 | 
						|
## Related Documentation
 | 
						|
- [[ai_documentation_style]]
 | 
						|
- [[knowledge_graph_structure]]
 | 
						|
- [[embedding_framework]]
 | 
						|
- [[semantic_search]]
 | 
						|
 | 
						|
## References
 | 
						|
- [[embedding_techniques]]
 | 
						|
- [[semantic_processing]]
 | 
						|
- [[graph_algorithms]]
 | 
						|
- [[optimization_strategies]]  |