зеркало из
https://github.com/docxology/cognitive.git
synced 2025-11-01 05:36:05 +02:00
267 строки
7.1 KiB
Markdown
267 строки
7.1 KiB
Markdown
---
|
|
title: Swarm Intelligence Learning Path
|
|
type: learning_path
|
|
status: stable
|
|
created: 2024-02-07
|
|
tags:
|
|
- swarm_intelligence
|
|
- collective_behavior
|
|
- learning
|
|
semantic_relations:
|
|
- type: implements
|
|
links: [[learning_path_template]]
|
|
- type: relates
|
|
links:
|
|
- [[knowledge_base/cognitive/swarm_intelligence]]
|
|
- [[knowledge_base/cognitive/collective_behavior]]
|
|
---
|
|
|
|
# Swarm Intelligence Learning Path
|
|
|
|
## Overview
|
|
|
|
This learning path guides you through understanding and implementing swarm intelligence systems, with special focus on biologically-inspired collective behavior. You'll learn theoretical principles, mathematical models, and practical implementations using the ant colony example.
|
|
|
|
## Prerequisites
|
|
|
|
### Required Knowledge
|
|
- [[knowledge_base/mathematics/probability_theory|Probability Theory]]
|
|
- [[knowledge_base/cognitive/emergence_self_organization|Emergence and Self-Organization]]
|
|
- [[knowledge_base/systems/systems_theory|Systems Theory]]
|
|
|
|
### Recommended Background
|
|
- Python programming
|
|
- Basic agent-based modeling
|
|
- Complex systems concepts
|
|
|
|
## Learning Progression
|
|
|
|
### 1. Foundations (Week 1-2)
|
|
#### Core Concepts
|
|
- [[knowledge_base/cognitive/collective_behavior|Collective Behavior]]
|
|
- [[knowledge_base/cognitive/emergence_self_organization|Emergence]]
|
|
- [[knowledge_base/cognitive/stigmergic_coordination|Stigmergic Coordination]]
|
|
|
|
#### Practical Exercises
|
|
- [[examples/basic_swarm|Basic Swarm Simulation]]
|
|
- [[examples/emergence_patterns|Emergence Patterns]]
|
|
|
|
#### Learning Objectives
|
|
- Understand swarm principles
|
|
- Implement basic swarm behaviors
|
|
- Analyze emergent patterns
|
|
|
|
### 2. Ant Colony Systems (Week 3-4)
|
|
#### Advanced Concepts
|
|
- [[knowledge_base/cognitive/social_insect_cognition|Social Insect Cognition]]
|
|
- [[knowledge_base/cognitive/collective_behavior_ants|Ant Colony Behavior]]
|
|
- [[knowledge_base/cognitive/pheromone_communication|Pheromone Communication]]
|
|
|
|
#### Implementation Practice
|
|
- [[examples/pheromone_system|Pheromone System]]
|
|
- [[examples/foraging_behavior|Foraging Behavior]]
|
|
|
|
#### Learning Objectives
|
|
- Implement pheromone systems
|
|
- Model foraging behavior
|
|
- Develop path optimization
|
|
|
|
### 3. Advanced Implementation (Week 5-6)
|
|
#### Core Components
|
|
- [[knowledge_base/cognitive/active_inference|Active Inference]]
|
|
- [[knowledge_base/mathematics/path_integral_theory|Path Integral Methods]]
|
|
- [[knowledge_base/cognitive/hierarchical_processing|Hierarchical Models]]
|
|
|
|
#### Projects
|
|
- [[examples/ant_colony|Ant Colony Simulation]]
|
|
- [[examples/multi_colony|Multi-Colony System]]
|
|
|
|
#### Learning Objectives
|
|
- Implement complete colony system
|
|
- Integrate active inference
|
|
- Develop advanced features
|
|
|
|
## Implementation Examples
|
|
|
|
### Basic Swarm Agent
|
|
```python
|
|
class SwarmAgent:
|
|
def __init__(self, config):
|
|
self.position = initialize_position()
|
|
self.velocity = initialize_velocity()
|
|
self.sensors = create_sensors()
|
|
|
|
def update(self, neighbors, environment):
|
|
"""Update agent state based on local information."""
|
|
# Process sensor information
|
|
local_info = self.sensors.process(neighbors, environment)
|
|
|
|
# Update movement
|
|
self.velocity = compute_velocity(local_info)
|
|
self.position += self.velocity
|
|
|
|
def interact(self, environment):
|
|
"""Interact with environment (e.g., deposit pheromones)."""
|
|
pass
|
|
```
|
|
|
|
### Ant Colony Implementation
|
|
```python
|
|
class AntColony:
|
|
def __init__(self, config):
|
|
self.agents = create_agents(config)
|
|
self.environment = create_environment(config)
|
|
self.pheromone_grid = initialize_pheromones()
|
|
|
|
def update(self, dt):
|
|
"""Update colony state."""
|
|
# Update agents
|
|
for agent in self.agents:
|
|
observation = self.environment.get_local_state(agent.position)
|
|
agent.update(dt, observation)
|
|
|
|
# Update environment
|
|
self.environment.update(dt)
|
|
self.pheromone_grid *= self.config.pheromone_decay
|
|
|
|
def run_simulation(self, steps):
|
|
"""Run simulation for specified steps."""
|
|
for step in range(steps):
|
|
self.update(self.config.timestep)
|
|
self.collect_data(step)
|
|
```
|
|
|
|
## Study Resources
|
|
|
|
### Core Reading
|
|
- [[knowledge_base/cognitive/swarm_intelligence|Swarm Intelligence]]
|
|
- [[knowledge_base/cognitive/collective_behavior|Collective Behavior]]
|
|
- [[knowledge_base/cognitive/social_insect_cognition|Social Insect Cognition]]
|
|
|
|
### Code Examples
|
|
- [[examples/basic_swarm|Basic Swarm]]
|
|
- [[examples/ant_colony|Ant Colony]]
|
|
- [[examples/multi_colony|Multi-Colony]]
|
|
|
|
### Additional Resources
|
|
- Research papers
|
|
- Video tutorials
|
|
- Interactive simulations
|
|
|
|
## Assessment
|
|
|
|
### Knowledge Checkpoints
|
|
1. Swarm fundamentals
|
|
2. Ant colony systems
|
|
3. Advanced implementations
|
|
4. Real-world applications
|
|
|
|
### Projects
|
|
1. Mini-project: Basic swarm simulation
|
|
2. Implementation: Ant colony system
|
|
3. Final project: Advanced application
|
|
|
|
### Success Criteria
|
|
- Working swarm implementation
|
|
- Ant colony simulation
|
|
- Advanced features
|
|
- Performance optimization
|
|
|
|
## Next Steps
|
|
|
|
### Advanced Paths
|
|
- [[learning_paths/advanced_swarm|Advanced Swarm Systems]]
|
|
- [[learning_paths/multi_agent_systems|Multi-Agent Systems]]
|
|
- [[learning_paths/robotics_swarms|Robotic Swarms]]
|
|
|
|
### Specializations
|
|
- [[specializations/swarm_robotics|Swarm Robotics]]
|
|
- [[specializations/collective_intelligence|Collective Intelligence]]
|
|
- [[specializations/bio_inspired_computing|Bio-inspired Computing]]
|
|
|
|
## Related Paths
|
|
|
|
### Prerequisites
|
|
- [[learning_paths/complex_systems|Complex Systems]]
|
|
- [[learning_paths/agent_based_modeling|Agent-based Modeling]]
|
|
|
|
### Follow-up Paths
|
|
- [[learning_paths/advanced_robotics|Advanced Robotics]]
|
|
- [[learning_paths/distributed_systems|Distributed Systems]]
|
|
|
|
## Common Challenges
|
|
|
|
### Theoretical Challenges
|
|
- Understanding emergence
|
|
- Modeling collective behavior
|
|
- Analyzing system dynamics
|
|
|
|
### Implementation Challenges
|
|
- Efficient simulation
|
|
- Scalability issues
|
|
- Visualization complexity
|
|
|
|
### Solutions
|
|
- Start with simple models
|
|
- Incremental complexity
|
|
- Regular validation
|
|
- Performance profiling
|
|
|
|
## Example Configurations
|
|
|
|
### Basic Swarm Config
|
|
```yaml
|
|
swarm:
|
|
population_size: 100
|
|
sensor_range: 5.0
|
|
max_speed: 2.0
|
|
interaction_radius: 3.0
|
|
|
|
environment:
|
|
size: [100, 100]
|
|
obstacles: 10
|
|
boundary_conditions: "periodic"
|
|
```
|
|
|
|
### Ant Colony Config
|
|
```yaml
|
|
colony:
|
|
ants: 50
|
|
nest_location: [50, 50]
|
|
pheromone_decay: 0.99
|
|
|
|
foraging:
|
|
food_sources: 5
|
|
food_value: 1.0
|
|
max_steps: 10000
|
|
```
|
|
|
|
## Visualization Tools
|
|
|
|
### Basic Visualization
|
|
```python
|
|
def visualize_swarm(agents, environment):
|
|
"""Visualize swarm behavior."""
|
|
plt.figure(figsize=(10, 10))
|
|
|
|
# Plot agents
|
|
positions = [agent.position for agent in agents]
|
|
plt.scatter([p.x for p in positions],
|
|
[p.y for p in positions])
|
|
|
|
# Plot environment
|
|
environment.plot()
|
|
plt.show()
|
|
```
|
|
|
|
### Advanced Analysis
|
|
```python
|
|
def analyze_behavior(simulation_data):
|
|
"""Analyze collective behavior patterns."""
|
|
# Compute metrics
|
|
coherence = compute_coherence(simulation_data)
|
|
efficiency = compute_efficiency(simulation_data)
|
|
|
|
# Visualize results
|
|
plot_metrics(coherence, efficiency)
|
|
``` |